View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.potential.parsers;
39  
40  import static ffx.potential.bonded.BondedUtils.numberAtoms;
41  import static ffx.potential.bonded.NamingUtils.renameAtomsToPDBStandard;
42  import static ffx.potential.bonded.PolymerUtils.assignAtomTypes;
43  import static ffx.potential.bonded.PolymerUtils.buildDisulfideBonds;
44  import static ffx.potential.bonded.PolymerUtils.buildMissingResidues;
45  import static ffx.potential.bonded.PolymerUtils.locateDisulfideBonds;
46  import static ffx.potential.parsers.PDBFilter.PDBFileStandard.VERSION3_2;
47  import static ffx.potential.parsers.PDBFilter.PDBFileStandard.VERSION3_3;
48  import static ffx.utilities.StringUtils.padLeft;
49  import static java.lang.Double.parseDouble;
50  import static java.lang.Integer.parseInt;
51  import static java.lang.String.format;
52  import static org.apache.commons.lang3.StringUtils.repeat;
53  import static org.apache.commons.math3.util.FastMath.min;
54  
55  import ffx.crystal.Crystal;
56  import ffx.crystal.SpaceGroup;
57  import ffx.crystal.SpaceGroupDefinitions;
58  import ffx.crystal.SpaceGroupInfo;
59  import ffx.crystal.SymOp;
60  import ffx.potential.MolecularAssembly;
61  import ffx.potential.Utilities.FileType;
62  import ffx.potential.bonded.*;
63  import ffx.potential.bonded.AminoAcidUtils.AminoAcid3;
64  import ffx.potential.parameters.ForceField;
65  import ffx.utilities.Hybrid36;
66  import ffx.utilities.StringUtils;
67  import java.io.BufferedReader;
68  import java.io.BufferedWriter;
69  import java.io.File;
70  import java.io.FileNotFoundException;
71  import java.io.FileReader;
72  import java.io.FileWriter;
73  import java.io.IOException;
74  import java.util.ArrayList;
75  import java.util.Collections;
76  import java.util.HashMap;
77  import java.util.List;
78  import java.util.Map;
79  import java.util.Objects;
80  import java.util.OptionalDouble;
81  import java.util.Set;
82  import java.util.logging.Level;
83  import java.util.logging.Logger;
84  import java.util.regex.Matcher;
85  import java.util.regex.Pattern;
86  import java.util.stream.Collectors;
87  import org.apache.commons.configuration2.CompositeConfiguration;
88  
89  /**
90   * The PDBFilter class parses data from a Protein DataBank (*.PDB) file. The following records are
91   * recognized: ANISOU, ATOM, CONECT, CRYST1, END, HELIX, HETATM, LINK, SHEET, SSBOND, REMARK. The
92   * rest are currently ignored.
93   *
94   * @author Michael J. Schnieders
95   * @see <a href="http://www.wwpdb.org/documentation/format32/v3.2.html">PDB format 3.2</a>
96   * @since 1.0
97   */
98  public final class PDBFilter extends SystemFilter {
99  
100   private static final Logger logger = Logger.getLogger(PDBFilter.class.getName());
101   private static final Set<String> backboneNames;
102   private static final Set<String> constantPhBackboneNames;
103   private static final Set<String> naBackboneNames;
104 
105   static {
106     String[] names = {"C", "CA", "N", "O", "OXT", "OT2"};
107     backboneNames = Set.of(names);
108 
109     String[] constantPhNames = {"C", "CA", "N", "O", "OXT", "OT2", "H", "HA", "H1", "H2", "H3"};
110     constantPhBackboneNames = Set.of(constantPhNames);
111     
112     String[] naNames = {"P", "OP1", "OP2", "O5'", "C5'", "C4'", "O4'", "C3'", "O3'", "C2'", "C1'"};
113     naBackboneNames = Set.of(naNames);
114   }
115 
116   /** Map of SEQRES entries. */
117   private final Map<Character, String[]> seqRes = new HashMap<>();
118   /** Map of DBREF entries. */
119   private final Map<Character, int[]> dbRef = new HashMap<>();
120   /** List of altLoc characters seen in the PDB file. */
121   private final List<Character> altLocs = new ArrayList<>();
122   /**
123    * List of segIDs defined for the PDB file.
124    *
125    * <p>The expectation is for chain naming from A-Z, then from 0-9. For large systems, chain names
126    * are sometimes reused due to limitations in the PDB format.
127    *
128    * <p>However, we define segIDs to always be unique. For the first A-Z,0-9 series chainID ==
129    * segID. Then, for second A-Z,0-9 series, the segID = 1A-1Z,10-19, and for the third series segID
130    * = 2A-2Z,20-29, and so on.
131    */
132   private final List<String> segIDs = new ArrayList<>();
133 
134   private final Map<Character, List<String>> segidMap = new HashMap<>();
135   /** Maps a chain to the number of insertion codes encountered in that chain. */
136   private final Map<Character, Integer> insertionCodeCount = new HashMap<>();
137   /**
138    * Maps chainIDResNumInsCode to renumbered chainIDResNum. For example, residue 52A in chain C might
139    * be renumbered to residue 53, and mapped as "C52A" to "C53".
140    */
141   private final Map<String, String> pdbToNewResMap = new HashMap<>();
142   /** List of modified residues * */
143   private final Map<String, String> modRes = new HashMap<>();
144   /** Keep track of ATOM record serial numbers to match them with ANISOU records. */
145   private final HashMap<Integer, Atom> atoms = new HashMap<>();
146 
147   private final Map<MolecularAssembly, BufferedReader> readers = new HashMap<>();
148   /** The current altLoc - i.e., the one we are defining a chemical system for. */
149   private Character currentAltLoc = 'A';
150   /** Character for the current chain ID. */
151   private Character currentChainID = null;
152   /** String for the current SegID. */
153   private String currentSegID = null;
154   /** Flag to indicate a mutation is requested. */
155   private boolean mutate = false;
156   private List<Mutation> mutations = null;
157   private List<Integer> resNumberList = null;
158   /** Flag to indicate if missing fields should be printed (i.e. missing B-factors). */
159   private boolean printMissingFields = true;
160   /** Number of symmetry operators when expanding to a P1 unit cell (-1 saves as current spacegroup). */
161   private int nSymOp = -1;
162   /** Number of replicates in A lattice direction (-1 defaults to unit cell). */
163   private int lValue = -1;
164   /** Number of replicates in B lattice direction (-1 defaults to unit cell). */
165   private int mValue = -1;
166   /** Number of replicates in C lattice direction (-1 defaults to unit cell). */
167   private int nValue = -1;
168   /**
169    * The serial field continues from the previous asymmetric unit when expanding to P1. This is not
170    * used when saving as the current spacegroup.
171    */
172   private int serialP1 = 0;
173   /** Assume current standard. */
174   private PDBFileStandard fileStandard = VERSION3_3;
175   /** If false, skip logging "Saving file". */
176   private boolean logWrites = true;
177   /** Keep track of the current MODEL in the file. */
178   private int modelsRead = 1;
179   /** Tracks output MODEL numbers. Unused if below zero. */
180   private int modelsWritten = -1;
181   /** Replicates vector dimensions if saving as expanded. */
182   private int[] lmn = new int[]{1,1,1};
183   private String versionFileName;
184 
185   private final File readFile;
186   private List<String> remarkLines = Collections.emptyList();
187   private double lastReadLambda = Double.NaN;
188 
189   /**
190    * If true, read in titratable residues in their fully protonated form.
191    */
192   private boolean constantPH = false;
193   /**
194    * If true, read in titratable residues in their protonated form.
195    */
196   private boolean rotamerTitration = false;
197   /**
198    * List of residue to rename for constantPH simulations.
199    */
200   private static final HashMap<AminoAcid3, AminoAcid3> constantPHResidueMap = new HashMap<>();
201 
202   static {
203     // Lysine
204     constantPHResidueMap.put(AminoAcidUtils.AminoAcid3.LYD, AminoAcidUtils.AminoAcid3.LYS);
205     // Cysteine
206     constantPHResidueMap.put(AminoAcidUtils.AminoAcid3.CYD, AminoAcidUtils.AminoAcid3.CYS);
207     // Histidine
208     constantPHResidueMap.put(AminoAcidUtils.AminoAcid3.HID, AminoAcidUtils.AminoAcid3.HIS);
209     constantPHResidueMap.put(AminoAcidUtils.AminoAcid3.HIE, AminoAcidUtils.AminoAcid3.HIS);
210     // Aspartate
211     constantPHResidueMap.put(AminoAcidUtils.AminoAcid3.ASP, AminoAcidUtils.AminoAcid3.ASD);
212     constantPHResidueMap.put(AminoAcidUtils.AminoAcid3.ASH, AminoAcidUtils.AminoAcid3.ASD);
213     // Glutamate
214     constantPHResidueMap.put(AminoAcidUtils.AminoAcid3.GLU, AminoAcidUtils.AminoAcid3.GLD);
215     constantPHResidueMap.put(AminoAcidUtils.AminoAcid3.GLH, AminoAcidUtils.AminoAcid3.GLD);
216   }
217 
218   /**
219    * List of residue to rename for rotamer titration simulations.
220    */
221   private static final HashMap<AminoAcid3, AminoAcid3> rotamerResidueMap = new HashMap<>();
222 
223   static {
224     // Lysine
225     rotamerResidueMap.put(AminoAcidUtils.AminoAcid3.LYD, AminoAcidUtils.AminoAcid3.LYS);
226     // Histidine
227     rotamerResidueMap.put(AminoAcidUtils.AminoAcid3.HID, AminoAcidUtils.AminoAcid3.HIS);
228     rotamerResidueMap.put(AminoAcidUtils.AminoAcid3.HIE, AminoAcidUtils.AminoAcid3.HIS);
229     // Aspartate
230     rotamerResidueMap.put(AminoAcidUtils.AminoAcid3.ASP, AminoAcidUtils.AminoAcid3.ASH);
231     // Glutamate
232     rotamerResidueMap.put(AminoAcidUtils.AminoAcid3.GLU, AminoAcidUtils.AminoAcid3.GLH);
233     //Cysteine
234     rotamerResidueMap.put(AminoAcidUtils.AminoAcid3.CYD, AminoAcidUtils.AminoAcid3.CYS);
235   }
236 
237   /**
238    * Constructor for PDBFilter.
239    *
240    * @param files a {@link java.util.List} object.
241    * @param molecularAssembly a {@link ffx.potential.MolecularAssembly} object.
242    * @param forceField a {@link ffx.potential.parameters.ForceField} object.
243    * @param properties a {@link org.apache.commons.configuration2.CompositeConfiguration}
244    *     object.
245    */
246   public PDBFilter(List<File> files, MolecularAssembly molecularAssembly, ForceField forceField,
247       CompositeConfiguration properties) {
248     super(files, molecularAssembly, forceField, properties);
249     bondList = new ArrayList<>();
250     this.fileType = FileType.PDB;
251     readFile = files.get(0);
252   }
253 
254   /**
255    * Parse the PDB File from a URL.
256    *
257    * @param file a {@link java.io.File} object.
258    * @param molecularAssembly a {@link ffx.potential.MolecularAssembly} object.
259    * @param forceField a {@link ffx.potential.parameters.ForceField} object.
260    * @param properties a {@link org.apache.commons.configuration2.CompositeConfiguration}
261    *     object.
262    */
263   public PDBFilter(File file, MolecularAssembly molecularAssembly, ForceField forceField,
264       CompositeConfiguration properties) {
265     super(file, molecularAssembly, forceField, properties);
266     bondList = new ArrayList<>();
267     this.fileType = FileType.PDB;
268     readFile = file;
269   }
270 
271   /**
272    * Parse the PDB File from a URL.
273    *
274    * @param file a {@link java.io.File} object.
275    * @param molecularAssemblies a {@link java.util.List} object.
276    * @param forceField a {@link ffx.potential.parameters.ForceField} object.
277    * @param properties a {@link org.apache.commons.configuration2.CompositeConfiguration}
278    *     object.
279    */
280   public PDBFilter(File file, List<MolecularAssembly> molecularAssemblies, ForceField forceField,
281       CompositeConfiguration properties) {
282     super(file, molecularAssemblies, forceField, properties);
283     bondList = new ArrayList<>();
284     this.fileType = FileType.PDB;
285     readFile = file;
286   }
287 
288   /**
289    * Constructor for PDBFilter with residue numbers.
290    *
291    * @param file a {@link java.util.List} object.
292    * @param molecularAssembly a {@link ffx.potential.MolecularAssembly} object.
293    * @param forceField a {@link ffx.potential.parameters.ForceField} object.
294    * @param properties a {@link org.apache.commons.configuration2.CompositeConfiguration}
295    *     object.
296    * @param resNumberList a List of integer residue numbers for constant pH rotamer
297    *     optimization.
298    */
299   public PDBFilter(File file, MolecularAssembly molecularAssembly, ForceField forceField,
300       CompositeConfiguration properties, List<Integer> resNumberList) {
301     super(file, molecularAssembly, forceField, properties);
302     bondList = new ArrayList<>();
303     this.fileType = FileType.PDB;
304     this.readFile = file;
305     this.resNumberList = resNumberList;
306     //this.chainList = chainList;
307   }
308 
309 
310   /**
311    * Simple method useful for converting files to PDB format.
312    *
313    * @param atom a {@link ffx.potential.bonded.Atom} object.
314    * @return Returns a PDB ATOM or HETATM record for the passed Atom.
315    */
316   public static String toPDBAtomLine(Atom atom) {
317     StringBuilder sb;
318     if (atom.isHetero()) {
319       sb = new StringBuilder("HETATM");
320     } else {
321       sb = new StringBuilder("ATOM  ");
322     }
323     sb.append(repeat(" ", 74));
324 
325     String name = atom.getName();
326     int nameLength = name.length();
327     if (nameLength > 4) {
328       name = name.substring(0, 4);
329     } else if (nameLength == 1) {
330       name = name + "  ";
331     } else if (nameLength == 2) {
332       name = name + " ";
333     }
334     int serial = atom.getXyzIndex();
335     sb.replace(6, 16, format("%5s " + padLeft(name.toUpperCase(), 4), Hybrid36.encode(5, serial)));
336 
337     Character altLoc = atom.getAltLoc();
338     if (altLoc != null) {
339       sb.setCharAt(16, altLoc);
340     } else {
341       char blankChar = ' ';
342       sb.setCharAt(16, blankChar);
343     }
344 
345     String resName = atom.getResidueName();
346     sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
347 
348     char chain = atom.getChainID();
349     sb.setCharAt(21, chain);
350 
351     int resID = atom.getResidueNumber();
352     sb.replace(22, 26, format("%4s", Hybrid36.encode(4, resID)));
353 
354     double[] xyz = atom.getXYZ(null);
355     StringBuilder decimals = new StringBuilder();
356     for (int i = 0; i < 3; i++) {
357       try {
358         decimals.append(StringUtils.fwFpDec(xyz[i], 8, 3));
359       } catch (IllegalArgumentException ex) {
360         String newValue = StringUtils.fwFpTrunc(xyz[i], 8, 3);
361         logger.info(
362             format(" XYZ coordinate %8.3f for atom %s overflowed PDB format and is truncated to %s.",
363                 xyz[i], atom, newValue));
364         decimals.append(newValue);
365       }
366     }
367     try {
368       decimals.append(StringUtils.fwFpDec(atom.getOccupancy(), 6, 2));
369     } catch (IllegalArgumentException ex) {
370       logger.severe(
371           format(" Occupancy %6.2f for atom %s must be between 0 and 1.", atom.getOccupancy(),
372               atom));
373     }
374     try {
375       decimals.append(StringUtils.fwFpDec(atom.getTempFactor(), 6, 2));
376     } catch (IllegalArgumentException ex) {
377       String newValue = StringUtils.fwFpTrunc(atom.getTempFactor(), 6, 2);
378       logger.info(
379           format(" B-factor %6.2f for atom %s overflowed the PDB format and is truncated to %s.",
380               atom.getTempFactor(), atom, newValue));
381       decimals.append(newValue);
382     }
383 
384     sb.replace(30, 66, decimals.toString());
385     sb.replace(78, 80, format("%2d", 0));
386     sb.append("\n");
387     return sb.toString();
388   }
389 
390   public void setConstantPH(boolean constantPH) {
391     this.constantPH = constantPH;
392   }
393 
394   public void setRotamerTitration(boolean rotamerTitration) {
395     this.rotamerTitration = rotamerTitration;
396   }
397 
398   /** clearSegIDs */
399   public void clearSegIDs() {
400     segIDs.clear();
401   }
402 
403   /** {@inheritDoc} */
404   @Override
405   public void closeReader() {
406     for (MolecularAssembly system : systems) {
407       BufferedReader br = readers.get(system);
408       if (br != null) {
409         try {
410           br.close();
411         } catch (IOException ex) {
412           logger.warning(format(" Exception in closing system %s: %s", system.toString(), ex));
413         }
414       }
415     }
416   }
417 
418   @Override
419   public int countNumModels() {
420     Set<File> files = systems.stream().map(MolecularAssembly::getFile).map(File::toString).distinct()
421         .map(File::new).collect(Collectors.toSet());
422 
423     // Dangers of parallelism are minimized by: unique files/filenames, read-only access.
424     return files.parallelStream().mapToInt((File fi) -> {
425       int nModelsLocal = 0;
426       try (BufferedReader br = new BufferedReader(new FileReader(fi))) {
427         String line = br.readLine();
428         while (line != null) {
429           if (line.startsWith("MODEL")) {
430             ++nModelsLocal;
431           }
432           line = br.readLine();
433         }
434         nModelsLocal = Math.max(1, nModelsLocal);
435       } catch (IOException ex) {
436         logger.info(format(" Exception in parsing file %s: %s", fi, ex));
437       }
438       return nModelsLocal;
439     }).sum();
440   }
441 
442   /**
443    * Get the list of alternate locations encountered.
444    *
445    * @return the alternate location list.
446    */
447   public List<Character> getAltLocs() {
448     return altLocs;
449   }
450 
451   /** {@inheritDoc} */
452   @Override
453   public OptionalDouble getLastReadLambda() {
454     return Double.isNaN(lastReadLambda) ? OptionalDouble.empty() : OptionalDouble.of(lastReadLambda);
455   }
456 
457   /**
458    * Returns all the remark lines found by the last readFile call.
459    *
460    * @return Remark lines from the last readFile call.
461    */
462   @Override
463   public String[] getRemarkLines() {
464     int nRemarks = remarkLines.size();
465     return remarkLines.toArray(new String[nRemarks]);
466   }
467 
468   @Override
469   public int getSnapshot() {
470     return modelsRead;
471   }
472 
473   /**
474    * Mutate residue(s) as the PDB file is being parsed.
475    *
476    * @param mutations a {@link java.util.List} object.
477    */
478   public void mutate(List<Mutation> mutations) {
479     mutate = true;
480     if (this.mutations == null) {
481       this.mutations = new ArrayList<>();
482     }
483     this.mutations.addAll(mutations);
484   }
485 
486   /** Parse the PDB File */
487   @Override
488   public boolean readFile() {
489     remarkLines = new ArrayList<>();
490     // First atom is #1, to match xyz file format
491     int xyzIndex = 1;
492     setFileRead(false);
493     systems.add(activeMolecularAssembly);
494 
495     List<String> conects = new ArrayList<>();
496     List<String> links = new ArrayList<>();
497     List<String> ssbonds = new ArrayList<>();
498     List<String> structs = new ArrayList<>();
499     try {
500       for (File file : files) {
501         currentFile = file;
502         if (mutate) {
503           List<Character> chainIDs = new ArrayList<>();
504           try (BufferedReader br = new BufferedReader(new FileReader(file))) {
505             String line = br.readLine();
506             while (line != null) {
507               // Replace all tabs w/ 4x spaces
508               line = line.replaceAll("\t", "    ");
509               String identity = line;
510               if (line.length() > 6) {
511                 identity = line.substring(0, 6);
512               }
513               identity = identity.trim().toUpperCase();
514               Record record;
515               try {
516                 record = Record.valueOf(identity);
517               } catch (Exception e) {
518                 // Continue until the record is recognized.
519                 line = br.readLine();
520                 continue;
521               }
522               switch (record) {
523                 case ANISOU, HETATM, ATOM -> {
524                   char c22 = line.charAt(21);
525                   boolean idFound = false;
526                   for (Character chainID : chainIDs) {
527                     if (c22 == chainID) {
528                       idFound = true;
529                       break;
530                     }
531                   }
532                   if (!idFound) {
533                     chainIDs.add(c22);
534                   }
535                 }
536               }
537               line = br.readLine();
538             }
539             for (Mutation mtn : mutations) {
540               if (!chainIDs.contains(mtn.chainChar)) {
541                 if (chainIDs.size() == 1) {
542                   logger.warning(
543                       format(" Chain ID %c for mutation not found: only one chain %c found.",
544                           mtn.chainChar, chainIDs.get(0)));
545                 } else {
546                   logger.warning(
547                       format(" Chain ID %c for mutation not found: mutation will not proceed.",
548                           mtn.chainChar));
549                 }
550               }
551             }
552           } catch (IOException ioException) {
553             logger.fine(format(" Exception %s in parsing file to find chain IDs", ioException));
554           }
555         }
556 
557         // Check that the current file exists and that we can read it.
558         if (currentFile == null || !currentFile.exists() || !currentFile.canRead()) {
559           return false;
560         }
561 
562         // Open the current file for parsing.
563         try (BufferedReader br = new BufferedReader(new FileReader(currentFile))) {
564           // Echo the alternate location being parsed.
565           if (currentAltLoc == 'A') {
566             logger.info(format(" Reading %s", currentFile.getName()));
567           } else {
568             logger.info(format(" Reading %s alternate location %s", currentFile.getName(), currentAltLoc));
569 
570           }
571           activeMolecularAssembly.setAlternateLocation(currentAltLoc);
572 
573           // Reset the current chain and segID.
574           currentChainID = null;
575           currentSegID = null;
576           boolean containsInsCode = false;
577 
578           // Read the first line of the file.
579           String line = br.readLine();
580 
581           // Parse until END or ENDMDL is found, or to the end of the file.
582           while (line != null) {
583             // Replace all tabs w/ 4x spaces
584             line = line.replaceAll("\t", "    ");
585             String identity = line;
586             if (line.length() > 6) {
587               identity = line.substring(0, 6);
588             }
589             identity = identity.trim().toUpperCase();
590             Record record;
591             try {
592               record = Record.valueOf(identity);
593             } catch (Exception e) {
594               // Continue until the record is recognized.
595               line = br.readLine();
596               continue;
597             }
598 
599             // Switch on the known record.
600             switch (record) {
601               case ENDMDL:
602               case END:
603                 // Setting "line" to null will exit the loop.
604                 line = null;
605                 continue;
606               case DBREF:
607 // =============================================================================
608 //  1 -  6       Record name   "DBREF "
609 //  8 - 11       IDcode        idCode             ID code of this entry.
610 // 13            Character     chainID            Chain identifier.
611 // 15 - 18       Integer       seqBegin           Initial sequence number of the
612 //                                                PDB sequence segment.
613 // 19            AChar         insertBegin        Initial insertion code of the
614 //                                                PDB sequence segment.
615 // 21 - 24       Integer       seqEnd             Ending sequence number of the
616 //                                                PDB sequence segment.
617 // 25            AChar         insertEnd          Ending insertion code of the
618 //                                                PDB sequence segment.
619 // 27 - 32       LString       database           Sequence database name.
620 // 34 - 41       LString       dbAccession        Sequence database accession code.
621 // 43 - 54       LString       dbIdCode           Sequence  database identification code.
622 // 56 - 60       Integer       dbseqBegin         Initial sequence number of the
623 //                                                database seqment.
624 // 61            AChar         idbnsBeg           Insertion code of initial residue of the
625 //                                                segment, if PDB is the reference.
626 // 63 - 67       Integer       dbseqEnd           Ending sequence number of the
627 //                                                database segment.
628 // 68            AChar         dbinsEnd           Insertion code of the ending residue of
629 //                                                the segment, if PDB is the reference.
630 // =============================================================================
631                 Character chainID = line.substring(12, 13).toUpperCase().charAt(0);
632                 int seqBegin = parseInt(line.substring(14, 18).trim());
633                 int seqEnd = parseInt(line.substring(20, 24).trim());
634                 int[] seqRange = dbRef.computeIfAbsent(chainID, k -> new int[2]);
635                 seqRange[0] = seqBegin;
636                 seqRange[1] = seqEnd;
637                 break;
638               case SEQRES:
639 // =============================================================================
640 //  1 -  6        Record name    "SEQRES"
641 //  8 - 10        Integer        serNum       Serial number of the SEQRES record for the
642 //                                            current  chain. Starts at 1 and increments
643 //                                            by one  each line. Reset to 1 for each chain.
644 // 12             Character      chainID      Chain identifier. This may be any single
645 //                                            legal  character, including a blank which is
646 //                                            is used if there is only one chain.
647 // 14 - 17        Integer        numRes       Number of residues in the chain.
648 //                                            This  value is repeated on every record.
649 // 20 - 22        Residue name   resName      Residue name.
650 // 24 - 26        Residue name   resName      Residue name.
651 // 28 - 30        Residue name   resName      Residue name.
652 // 32 - 34        Residue name   resName      Residue name.
653 // 36 - 38        Residue name   resName      Residue name.
654 // 40 - 42        Residue name   resName      Residue name.
655 // 44 - 46        Residue name   resName      Residue name.
656 // 48 - 50        Residue name   resName      Residue name.
657 // 52 - 54        Residue name   resName      Residue name.
658 // 56 - 58        Residue name   resName      Residue name.
659 // 60 - 62        Residue name   resName      Residue name.
660 // 64 - 66        Residue name   resName      Residue name.
661 // 68 - 70        Residue name   resName      Residue name.
662 // =============================================================================
663                 activeMolecularAssembly.addHeaderLine(line);
664                 chainID = line.substring(11, 12).toUpperCase().charAt(0);
665                 int serNum = parseInt(line.substring(7, 10).trim());
666                 String[] chain = seqRes.get(chainID);
667                 int numRes = parseInt(line.substring(13, 17).trim());
668                 if (chain == null) {
669                   chain = new String[numRes];
670                   seqRes.put(chainID, chain);
671                 }
672                 int resID = (serNum - 1) * 13;
673                 int end = line.length();
674                 for (int start = 19; start + 3 <= end; start += 4) {
675                   String res = line.substring(start, start + 3).trim();
676                   if (res.isEmpty()) {
677                     break;
678                   }
679                   chain[resID++] = res;
680                 }
681                 break;
682               case MODRES:
683                 String modResName = line.substring(12, 15).trim();
684                 String stdName = line.substring(24, 27).trim();
685                 modRes.put(modResName.toUpperCase(), stdName.toUpperCase());
686                 activeMolecularAssembly.addHeaderLine(line);
687 // =============================================================================
688 //  1 -  6        Record name     "MODRES"
689 //  8 - 11        IDcode          idCode         ID code of this entry.
690 // 13 - 15        Residue name    resName        Residue name used in this entry.
691 // 17             Character       chainID        Chain identifier.
692 // 19 - 22        Integer         seqNum         Sequence number.
693 // 23             AChar           iCode          Insertion code.
694 // 25 - 27        Residue name    stdRes         Standard residue name.
695 // 30 - 70        String          comment        Description of the residue modification.
696 // =============================================================================
697                 break;
698               case ANISOU:
699 // =============================================================================
700 //  1 - 6        Record name   "ANISOU"
701 //  7 - 11       Integer       serial         Atom serial number.
702 // 13 - 16       Atom          name           Atom name.
703 // 17            Character     altLoc         Alternate location indicator
704 // 18 - 20       Residue name  resName        Residue name.
705 // 22            Character     chainID        Chain identifier.
706 // 23 - 26       Integer       resSeq         Residue sequence number.
707 // 27            AChar         iCode          Insertion code.
708 // 29 - 35       Integer       u[0][0]        U(1,1)
709 // 36 - 42       Integer       u[1][1]        U(2,2)
710 // 43 - 49       Integer       u[2][2]        U(3,3)
711 // 50 - 56       Integer       u[0][1]        U(1,2)
712 // 57 - 63       Integer       u[0][2]        U(1,3)
713 // 64 - 70       Integer       u[1][2]        U(2,3)
714 // 77 - 78       LString(2)    element        Element symbol, right-justified.
715 // 79 - 80       LString(2)    charge         Charge on the atom.
716 // =============================================================================
717                 boolean deleteAnisou = properties.getBoolean("delete-anisou", false);
718                 double resetBfactors = properties.getDouble("reset-bfactors", -1.0);
719                 if (deleteAnisou || resetBfactors >= 0.0) {
720                   break;
721                 }
722                 Integer serial = Hybrid36.decode(5, line.substring(6, 11));
723                 Character altLoc = line.substring(16, 17).toUpperCase().charAt(0);
724                 if (!altLocs.contains(altLoc)) {
725                   altLocs.add(altLoc);
726                 }
727                 if (!altLoc.equals(' ') && !altLoc.equals('A') && !altLoc.equals(currentAltLoc)) {
728                   break;
729                 }
730                 double[] adp = new double[6];
731                 adp[0] = parseInt(line.substring(28, 35).trim()) * 1.0e-4;
732                 adp[1] = parseInt(line.substring(35, 42).trim()) * 1.0e-4;
733                 adp[2] = parseInt(line.substring(42, 49).trim()) * 1.0e-4;
734                 adp[3] = parseInt(line.substring(49, 56).trim()) * 1.0e-4;
735                 adp[4] = parseInt(line.substring(56, 63).trim()) * 1.0e-4;
736                 adp[5] = parseInt(line.substring(63, 70).trim()) * 1.0e-4;
737                 if (atoms.containsKey(serial)) {
738                   Atom a = atoms.get(serial);
739                   a.setAltLoc(altLoc);
740                   a.setAnisou(adp);
741                 } else {
742                   logger.info(
743                       format(" No ATOM record for ANISOU serial number %d has been found.", serial));
744                   logger.info(format(" This ANISOU record will be ignored:\n %s", line));
745                 }
746                 break;
747               case ATOM:
748 // =============================================================================
749 //  1 -  6        Record name   "ATOM  "
750 //  7 - 11        Integer       serial       Atom serial number.
751 // 13 - 16        Atom          name         Atom name.
752 // 17             Character     altLoc       Alternate location indicator.
753 // 18 - 20        Residue name  resName      Residue name.
754 // 22             Character     chainID      Chain identifier.
755 // 23 - 26        Integer       resSeq       Residue sequence number.
756 // 27             AChar         iCode        Code for insertion of residues.
757 // 31 - 38        Real(8.3)     x            Orthogonal coordinates for X in Angstroms.
758 // 39 - 46        Real(8.3)     y            Orthogonal coordinates for Y in Angstroms.
759 // 47 - 54        Real(8.3)     z            Orthogonal coordinates for Z in Angstroms.
760 // 55 - 60        Real(6.2)     occupancy    Occupancy.
761 // 61 - 66        Real(6.2)     tempFactor   Temperature factor.
762 // 77 - 78        LString(2)    element      Element symbol, right-justified.
763 // 79 - 80        LString(2)    charge       Charge  on the atom.
764 // =============================================================================
765                 String name;
766                 String resName;
767                 String segID;
768                 int resSeq;
769                 boolean printAtom;
770                 double[] d;
771                 double occupancy;
772                 double tempFactor;
773                 Atom newAtom;
774                 Atom returnedAtom;
775                 // If it's a misnamed water, it will fall through to HETATM.
776                 if (!line.substring(17, 20).trim().equals("HOH")) {
777                   serial = Hybrid36.decode(5, line.substring(6, 11));
778                   name = line.substring(12, 16).trim();
779                   if (name.toUpperCase().contains("1H") || name.toUpperCase().contains("2H")
780                       || name.toUpperCase().contains("3H")) {
781                     // VERSION3_2 is presently just a placeholder for "anything non-standard".
782                     fileStandard = VERSION3_2;
783                   }
784                   altLoc = line.substring(16, 17).toUpperCase().charAt(0);
785                   if (!altLocs.contains(altLoc)) {
786                     altLocs.add(altLoc);
787                   }
788                   if (!altLoc.equals(' ') && !altLoc.equals(currentAltLoc)) {
789                     break;
790                   }
791                   // if (!altLoc.equals(' ') && !altLoc.equals('A') && !altLoc.equals(currentAltLoc)) {
792                   //  break;
793                   // }
794                   resName = line.substring(17, 20).trim();
795                   chainID = line.substring(21, 22).charAt(0);
796                   segID = getSegID(chainID);
797                   resSeq = Hybrid36.decode(4, line.substring(22, 26));
798 
799                   char insertionCode = line.charAt(26);
800                   if (insertionCode != ' ' && !containsInsCode) {
801                     containsInsCode = true;
802                     logger.warning(
803                         " FFX support for files with " + "insertion codes is experimental. "
804                             + "Residues will be renumbered to " + "eliminate insertion codes (52A "
805                             + "becomes 53, 53 becomes 54, etc)");
806                   }
807 
808                   int offset = insertionCodeCount.getOrDefault(chainID, 0);
809                   String pdbResNum = format("%c%d%c", chainID, resSeq, insertionCode);
810                   if (!pdbToNewResMap.containsKey(pdbResNum)) {
811                     if (insertionCode != ' ') {
812                       ++offset;
813                       insertionCodeCount.put(chainID, offset);
814                     }
815                     resSeq += offset;
816                     if (offset != 0) {
817                       logger.info(
818                           format(" Chain %c " + "residue %s-%s renumbered to %c %s-%d", chainID,
819                               pdbResNum.substring(1).trim(), resName, chainID, resName, resSeq));
820                     }
821                     String newNum = format("%c%d", chainID, resSeq);
822                     pdbToNewResMap.put(pdbResNum, newNum);
823                   } else {
824                     resSeq += offset;
825                   }
826 
827                   printAtom = false;
828                   if (mutate) {
829                     boolean doBreak = false;
830                     for (Mutation mtn : mutations) {
831                       if (chainID == mtn.chainChar && resSeq == mtn.resID) {
832                         String atomName = name.toUpperCase();
833 
834                         int isAA = AminoAcidUtils.getAminoAcidNumber(resName);
835                         int isNA = NucleicAcidUtils.getNucleicAcidNumber(resName);
836 
837                         if ((isNA != -1 && naBackboneNames.contains(atomName)) || (isAA != -1 && backboneNames.contains(atomName))) {
838                           printAtom = true;
839                           resName = mtn.resName;
840                         } else {
841                           // pyrimidines: need N1 & C2 | purines: need N9 & C4
842                           if (resName.equals("DA") || resName.equals("DG") || resName.equals("DAD") || resName.equals("DGU")) {
843                             boolean isMtnPyrimidine = mtn.resName.equals("DCY") || mtn.resName.equals("DTY");
844                             // log the deletion to get alchemical atoms from WT (don't include H primes)
845                             if (!atomName.contains("'") || !atomName.startsWith("H")) {
846                               logger.info(format(" DELETING atom %d %s of %s %d in chain %s", serial, atomName, resName, resSeq, chainID));
847                             }
848                             if (atomName.equals("N9")) {
849                               printAtom = true;
850                               resName = mtn.resName;
851                               if (isMtnPyrimidine) {
852                                 name = "N1"; // change N9 to N1
853                               }
854                             } else if (atomName.equals("C4")) {
855                               printAtom = true;
856                               resName = mtn.resName;
857                               if (isMtnPyrimidine) {
858                                 name = "C2"; // change C4 to C2
859                               }
860                             } else {
861                               doBreak = true;
862                               break;
863                             }
864                           } else if (resName.equals("DC") || resName.equals("DT") || resName.equals("DCY") || resName.equals("DTY")) {
865                             boolean isMtnPurine = mtn.resName.equals("DAD") || mtn.resName.equals("DGU");
866                             if (!atomName.contains("'") || !atomName.startsWith("H")) {
867                               logger.info(format(" DELETING atom %d %s of %s %d in chain %s", serial, atomName, resName, resSeq, chainID));
868                             }
869                             if (atomName.equals("N1")) {
870                               printAtom = true;
871                               resName = mtn.resName;
872                               if (isMtnPurine) {
873                                 name = "N9"; // change N1 to N9
874                               }
875                             } else if (atomName.equals("C2")) {
876                               printAtom = true;
877                               resName = mtn.resName;
878                               if (isMtnPurine) {
879                                 name = "C4"; // change C2 to C4
880                               }
881                             } else {
882                               doBreak = true;
883                               break;
884                             }
885                           } else {
886                             logger.info(format(" Deleting atom %s of %s %d", atomName, resName, resSeq));
887                             // don't have alchemical atom logging because this would be for AA
888                             doBreak = true;
889                             break;
890                           }
891                         }
892                       }
893                     }
894                     if (doBreak) {
895                       break;
896                     }
897                   }
898 
899                   if (constantPH) {
900                     AminoAcid3 aa3 = AminoAcidUtils.getAminoAcid(resName.toUpperCase());
901                     if (constantPHResidueMap.containsKey(aa3)) {
902                       String atomName = name.toUpperCase();
903                       AminoAcid3 aa3PH = constantPHResidueMap.get(aa3);
904                       resName = aa3PH.name();
905                       if (constantPhBackboneNames.contains(atomName)) {
906                         logger.info(format(" %s-%d %s", resName, resSeq, atomName));
907                       } else if (!atomName.startsWith("H")) {
908                         logger.info(format(" %s-%d %s", resName, resSeq, atomName));
909                       } else {
910                         logger.info(format(" %s-%d %s skipped", resName, resSeq, atomName));
911                         break;
912                       }
913                     }
914                   } else if (rotamerTitration) {
915                     AminoAcid3 aa3 = AminoAcidUtils.getAminoAcid(resName.toUpperCase());
916                     if (rotamerResidueMap.containsKey(aa3) && resNumberList.contains(resSeq)) {
917                       AminoAcid3 aa3rotamer = rotamerResidueMap.get(aa3);
918                       resName = aa3rotamer.name();
919                     }
920                   }
921                   d = new double[3];
922                   d[0] = parseDouble(line.substring(30, 38).trim());
923                   d[1] = parseDouble(line.substring(38, 46).trim());
924                   d[2] = parseDouble(line.substring(46, 54).trim());
925                   occupancy = 1.0;
926                   tempFactor = 1.0;
927                   try {
928                     occupancy = parseDouble(line.substring(54, 60).trim());
929                     tempFactor = parseDouble(line.substring(60, 66).trim());
930                   } catch (NumberFormatException | StringIndexOutOfBoundsException e) {
931                     // Use default values.
932                     if (printMissingFields) {
933                       logger.info(" Missing occupancy and b-factors set to 1.0.");
934                       printMissingFields = false;
935                     } else if (logger.isLoggable(Level.FINE)) {
936                       logger.fine(" Missing occupancy and b-factors set to 1.0.");
937                     }
938                   }
939 
940                   double bfactor = properties.getDouble("reset-bfactors", -1.0);
941                   if (bfactor >= 0.0) {
942                     tempFactor = bfactor;
943                   }
944 
945                   newAtom = new Atom(0, name, altLoc, d, resName, resSeq, chainID, occupancy, tempFactor, segID);
946 
947                   // Check if this is a modified residue.
948                   if (modRes.containsKey(resName.toUpperCase())) {
949                     newAtom.setModRes(true);
950                   }
951                   returnedAtom = (Atom) activeMolecularAssembly.addMSNode(newAtom);
952                   if (returnedAtom != newAtom) {
953                     // A previously added atom has been retained.
954                     atoms.put(serial, returnedAtom);
955                     if (logger.isLoggable(Level.FINE)) {
956                       logger.fine(returnedAtom + " has been retained over\n" + newAtom);
957                     }
958                   } else {
959                     // The new atom has been added.
960                     atoms.put(serial, newAtom);
961                     // Check if the newAtom took the xyzIndex of a previous alternate conformer.
962                     if (newAtom.getIndex() == 0) {
963                       newAtom.setXyzIndex(xyzIndex++);
964                     }
965                     if (printAtom) {
966                       logger.info(newAtom.toString());
967                     }
968                   }
969                   break;
970                 }
971                 break;
972               case HETATM:
973 // =============================================================================
974 //  1 - 6        Record name    "HETATM"
975 //  7 - 11       Integer        serial        Atom serial number.
976 // 13 - 16       Atom           name          Atom name.
977 // 17            Character      altLoc        Alternate location indicator.
978 // 18 - 20       Residue name   resName       Residue name.
979 // 22            Character      chainID       Chain identifier.
980 // 23 - 26       Integer        resSeq        Residue sequence number.
981 // 27            AChar          iCode         Code for insertion of residues.
982 // 31 - 38       Real(8.3)      x             Orthogonal coordinates for X.
983 // 39 - 46       Real(8.3)      y             Orthogonal coordinates for Y.
984 // 47 - 54       Real(8.3)      z             Orthogonal coordinates for Z.
985 // 55 - 60       Real(6.2)      occupancy     Occupancy.
986 // 61 - 66       Real(6.2)      tempFactor    Temperature factor.
987 // 77 - 78       LString(2)     element       Element symbol; right-justified.
988 // 79 - 80       LString(2)     charge        Charge on the atom.
989 // =============================================================================
990                 serial = Hybrid36.decode(5, line.substring(6, 11));
991                 name = line.substring(12, 16).trim();
992                 altLoc = line.substring(16, 17).toUpperCase().charAt(0);
993                 if (!altLocs.contains(altLoc)) {
994                   altLocs.add(altLoc);
995                 }
996                 if (!altLoc.equals(' ') && !altLoc.equals(currentAltLoc)) {
997                   break;
998                 }
999                 // if (!altLoc.equals(' ') && !altLoc.equals('A') && !altLoc.equals(currentAltLoc)) {
1000                 //  break;
1001                 //}
1002                 resName = line.substring(17, 20).trim();
1003                 chainID = line.substring(21, 22).charAt(0);
1004                 segID = getSegID(chainID);
1005                 resSeq = Hybrid36.decode(4, line.substring(22, 26));
1006 
1007                 char insertionCode = line.charAt(26);
1008                 if (insertionCode != ' ' && !containsInsCode) {
1009                   containsInsCode = true;
1010                   logger.warning(" FFX support for files with " + "insertion codes is experimental. "
1011                       + "Residues will be renumbered to " + "eliminate insertion codes (52A "
1012                       + "becomes 53, 53 becomes 54, etc)");
1013                 }
1014 
1015                 int offset = insertionCodeCount.getOrDefault(chainID, 0);
1016                 String pdbResNum = format("%c%d%c", chainID, resSeq, insertionCode);
1017                 if (!pdbToNewResMap.containsKey(pdbResNum)) {
1018                   if (insertionCode != ' ') {
1019                     ++offset;
1020                     insertionCodeCount.put(chainID, offset);
1021                   }
1022                   resSeq += offset;
1023                   if (offset != 0) {
1024                     logger.info(
1025                         format(" Chain %c " + "molecule %s-%s renumbered to %c %s-%d", chainID,
1026                             pdbResNum.substring(1).trim(), resName, chainID, resName, resSeq));
1027                   }
1028                   String newNum = format("%c%d", chainID, resSeq);
1029                   pdbToNewResMap.put(pdbResNum, newNum);
1030                 } else {
1031                   resSeq += offset;
1032                 }
1033 
1034                 d = new double[3];
1035                 d[0] = parseDouble(line.substring(30, 38).trim());
1036                 d[1] = parseDouble(line.substring(38, 46).trim());
1037                 d[2] = parseDouble(line.substring(46, 54).trim());
1038                 occupancy = 1.0;
1039                 tempFactor = 1.0;
1040                 try {
1041                   occupancy = parseDouble(line.substring(54, 60).trim());
1042                   tempFactor = parseDouble(line.substring(60, 66).trim());
1043                 } catch (NumberFormatException | StringIndexOutOfBoundsException e) {
1044                   // Use default values.
1045                   if (printMissingFields) {
1046                     logger.info(" Missing occupancy and b-factors set to 1.0.");
1047                     printMissingFields = false;
1048                   } else if (logger.isLoggable(Level.FINE)) {
1049                     logger.fine(" Missing occupancy and b-factors set to 1.0.");
1050                   }
1051                 }
1052 
1053                 double bfactor = properties.getDouble("reset-bfactors", -1.0);
1054                 if (bfactor >= 0.0) {
1055                   tempFactor = bfactor;
1056                 }
1057 
1058                 newAtom = new Atom(0, name, altLoc, d, resName, resSeq, chainID, occupancy, tempFactor, segID);
1059                 newAtom.setHetero(true);
1060                 // Check if this is a modified residue.
1061                 if (modRes.containsKey(resName.toUpperCase())) {
1062                   newAtom.setModRes(true);
1063                 }
1064                 returnedAtom = (Atom) activeMolecularAssembly.addMSNode(newAtom);
1065                 if (returnedAtom != newAtom) {
1066                   // A previously added atom has been retained.
1067                   atoms.put(serial, returnedAtom);
1068                   if (logger.isLoggable(Level.FINE)) {
1069                     logger.fine(returnedAtom + " has been retained over\n" + newAtom);
1070                   }
1071                 } else {
1072                   // The new atom has been added.
1073                   atoms.put(serial, newAtom);
1074                   newAtom.setXyzIndex(xyzIndex++);
1075                 }
1076                 break;
1077               case CRYST1:
1078 // =============================================================================
1079 // The CRYST1 record presents the unit cell parameters, space group, and Z
1080 // value. If the structure was not determined by crystallographic means, CRYST1
1081 // simply provides the unitary values, with an appropriate REMARK.
1082 //
1083 //  7 - 15       Real(9.3)     a              a (Angstroms).
1084 // 16 - 24       Real(9.3)     b              b (Angstroms).
1085 // 25 - 33       Real(9.3)     c              c (Angstroms).
1086 // 34 - 40       Real(7.2)     alpha          alpha (degrees).
1087 // 41 - 47       Real(7.2)     beta           beta (degrees).
1088 // 48 - 54       Real(7.2)     gamma          gamma (degrees).
1089 // 56 - 66       LString       sGroup         Space  group.
1090 // 67 - 70       Integer       z              Z value.
1091 // =============================================================================
1092                 if (line.length() < 55) {
1093                   logger.severe(" CRYST1 record is improperly formatted.");
1094                 }
1095                 double aaxis = parseDouble(line.substring(6, 15).trim());
1096                 double baxis = parseDouble(line.substring(15, 24).trim());
1097                 double caxis = parseDouble(line.substring(24, 33).trim());
1098                 double alpha = parseDouble(line.substring(33, 40).trim());
1099                 double beta = parseDouble(line.substring(40, 47).trim());
1100                 double gamma = parseDouble(line.substring(47, 54).trim());
1101                 int limit = min(line.length(), 66);
1102                 String sg = line.substring(55, limit).trim();
1103                 properties.addProperty("a-axis", aaxis);
1104                 properties.addProperty("b-axis", baxis);
1105                 properties.addProperty("c-axis", caxis);
1106                 properties.addProperty("alpha", alpha);
1107                 properties.addProperty("beta", beta);
1108                 properties.addProperty("gamma", gamma);
1109                 properties.addProperty("spacegroup", SpaceGroupInfo.pdb2ShortName(sg));
1110                 break;
1111               case CONECT:
1112 // =============================================================================
1113 //  7 - 11        Integer        serial       Atom  serial number
1114 // 12 - 16        Integer        serial       Serial number of bonded atom
1115 // 17 - 21        Integer        serial       Serial number of bonded atom
1116 // 22 - 26        Integer        serial       Serial number of bonded atom
1117 // 27 - 31        Integer        serial       Serial number of bonded atom
1118 //
1119 // CONECT records involving atoms for which the coordinates are not present
1120 // in the entry (e.g., symmetry-generated) are not given.
1121 // CONECT records involving atoms for which the coordinates are missing due
1122 // to disorder, are also not provided.
1123 // =============================================================================
1124                 conects.add(line);
1125                 break;
1126               case LINK:
1127 // =============================================================================
1128 // The LINK records specify connectivity between residues that is not implied by
1129 // the primary structure. Connectivity is expressed in terms of the atom names.
1130 // They also include the distance associated with each linkage following the
1131 // symmetry operations at the end of each record.
1132 // 13 - 16         Atom           name1           Atom name.
1133 // 17              Character      altLoc1         Alternate location indicator.
1134 // 18 - 20         Residue name   resName1        Residue  name.
1135 // 22              Character      chainID1        Chain identifier.
1136 // 23 - 26         Integer        resSeq1         Residue sequence number.
1137 // 27              AChar          iCode1          Insertion code.
1138 // 43 - 46         Atom           name2           Atom name.
1139 // 47              Character      altLoc2         Alternate location indicator.
1140 // 48 - 50         Residue name   resName2        Residue name.
1141 // 52              Character      chainID2        Chain identifier.
1142 // 53 - 56         Integer        resSeq2         Residue sequence number.
1143 // 57              AChar          iCode2          Insertion code.
1144 // 60 - 65         SymOP          sym1            Symmetry operator atom 1.
1145 // 67 - 72         SymOP          sym2            Symmetry operator atom 2.
1146 // 74 – 78         Real(5.2)      Length          Link distance
1147 // =============================================================================
1148                 char a1 = line.charAt(16);
1149                 char a2 = line.charAt(46);
1150                 if (a1 != a2) {
1151                   // logger.info(format(" Ignoring LINK record as alternate locations do not match\n
1152                   // %s.", line));
1153                   break;
1154                 }
1155                 if (currentAltLoc == 'A') {
1156                   if ((a1 == ' ' || a1 == 'A') && (a2 == ' ' || a2 == 'A')) {
1157                     links.add(line);
1158                   }
1159                 } else if (a1 == currentAltLoc && a2 == currentAltLoc) {
1160                   links.add(line);
1161                 }
1162                 break;
1163               case SSBOND:
1164 // =============================================================================
1165 // The SSBOND record identifies each disulfide bond in protein and polypeptide
1166 // structures by identifying the two residues involved in the bond.
1167 // The disulfide bond distance is included after the symmetry operations at
1168 // the end of the SSBOND record.
1169 //
1170 //  8 - 10        Integer         serNum       Serial number.
1171 // 12 - 14        LString(3)      "CYS"        Residue name.
1172 // 16             Character       chainID1     Chain identifier.
1173 // 18 - 21        Integer         seqNum1      Residue sequence number.
1174 // 22             AChar           icode1       Insertion code.
1175 // 26 - 28        LString(3)      "CYS"        Residue name.
1176 // 30             Character       chainID2     Chain identifier.
1177 // 32 - 35        Integer         seqNum2      Residue sequence number.
1178 // 36             AChar           icode2       Insertion code.
1179 // 60 - 65        SymOP           sym1         Symmetry oper for 1st resid
1180 // 67 - 72        SymOP           sym2         Symmetry oper for 2nd resid
1181 // 74 – 78        Real(5.2)      Length        Disulfide bond distance
1182 //
1183 // If SG of cysteine is disordered then there are possible alternate linkages.
1184 // wwPDB practice is to put together all possible SSBOND records. This is
1185 // problematic because the alternate location identifier is not specified in
1186 // the SSBOND record.
1187 //
1188 // Notes:
1189 // SSBOND records may be invalid if chain IDs are reused.
1190 // SSBOND records are applied by FFX to all conformers.
1191 // =============================================================================
1192                 ssbonds.add(line);
1193                 break;
1194               case HELIX:
1195 // =============================================================================
1196 // HELIX records are used to identify the position of helices in the molecule.
1197 // Helices are named, numbered, and classified by type. The residues where the
1198 // helix begins and ends are noted, as well as the total length.
1199 //
1200 //  8 - 10        Integer        serNum        Serial number of the helix. This starts
1201 //                                             at 1  and increases incrementally.
1202 // 12 - 14        LString(3)     helixID       Helix  identifier. In addition to a serial
1203 //                                             number, each helix is given an
1204 //                                             alphanumeric character helix identifier.
1205 // 16 - 18        Residue name   initResName   Name of the initial residue.
1206 // 20             Character      initChainID   Chain identifier for the chain containing
1207 //                                             this  helix.
1208 // 22 - 25        Integer        initSeqNum    Sequence number of the initial residue.
1209 // 26             AChar          initICode     Insertion code of the initial residue.
1210 // 28 - 30        Residue  name  endResName    Name of the terminal residue of the helix.
1211 // 32             Character      endChainID    Chain identifier for the chain containing
1212 //                                             this  helix.
1213 // 34 - 37        Integer        endSeqNum     Sequence number of the terminal residue.
1214 // 38             AChar          endICode      Insertion code of the terminal residue.
1215 // 39 - 40        Integer        helixClass    Helix class (see below).
1216 // 41 - 70        String         comment       Comment about this helix.
1217 // 72 - 76        Integer        length        Length of this helix.
1218 //
1219 //                                      CLASS NUMBER
1220 // TYPE OF  HELIX                     (COLUMNS 39 - 40)
1221 // --------------------------------------------------------------
1222 // Right-handed alpha (default)                1
1223 // Right-handed omega                          2
1224 // Right-handed pi                             3
1225 // Right-handed gamma                          4
1226 // Right-handed 3 - 10                         5
1227 // Left-handed alpha                           6
1228 // Left-handed omega                           7
1229 // Left-handed gamma                           8
1230 // 2 - 7 ribbon/helix                          9
1231 // Polyproline                                10
1232 // =============================================================================
1233               case SHEET:
1234 // =============================================================================
1235 // SHEET records are used to identify the position of sheets in the molecule.
1236 // Sheets are both named and numbered. The residues where the sheet begins and
1237 // ends are noted.
1238 //
1239 //  8 - 10        Integer       strand         Strand  number which starts at 1 for each
1240 //                                             strand within a sheet and increases by one.
1241 // 12 - 14        LString(3)    sheetID        Sheet  identifier.
1242 // 15 - 16        Integer       numStrands     Number  of strands in sheet.
1243 // 18 - 20        Residue name  initResName    Residue  name of initial residue.
1244 // 22             Character     initChainID    Chain identifier of initial residue in strand.
1245 // 23 - 26        Integer       initSeqNum     Sequence number of initial residue in strand.
1246 // 27             AChar         initICode      Insertion code of initial residue in  strand.
1247 // 29 - 31        Residue name  endResName     Residue name of terminal residue.
1248 // 33             Character     endChainID     Chain identifier of terminal residue.
1249 // 34 - 37        Integer       endSeqNum      Sequence number of terminal residue.
1250 // 38             AChar         endICode       Insertion code of terminal residue.
1251 // 39 - 40        Integer       sense          Sense of strand with respect to previous
1252 //                                             strand in the sheet. 0 if first strand,
1253 //                                             1 if  parallel,and -1 if anti-parallel.
1254 // 42 - 45        Atom          curAtom        Registration.  Atom name in current strand.
1255 // 46 - 48        Residue name  curResName     Registration.  Residue name in current strand
1256 // 50             Character     curChainId     Registration. Chain identifier in current strand.
1257 // 51 - 54        Integer       curResSeq      Registration.  Residue sequence number
1258 //                                             in current strand.
1259 // 55             AChar         curICode       Registration. Insertion code in current strand.
1260 // 57 - 60        Atom          prevAtom       Registration.  Atom name in previous strand.
1261 // 61 - 63        Residue name  prevResName    Registration.  Residue name in previous strand.
1262 // 65             Character     prevChainId    Registration.  Chain identifier in previous strand.
1263 // 66 - 69        Integer       prevResSeq     Registration. Residue sequence number
1264 //                                             in previous strand.
1265 // 70             AChar         prevICode      Registration.  Insertion code in
1266 //                                             previous strand.
1267 // =============================================================================
1268                 structs.add(line);
1269                 break;
1270               case MODEL: // Currently, no handling in initial read.
1271                 break;
1272               case MTRIX1:
1273 // ================================================================================
1274 // MTRIXn (n = 1, 2, or 3) records present transformations expressing
1275 // non-crystallographic symmetry.
1276 // MTRIXn will appear only when such transformations are required to generate an
1277 // entire asymmetric unit,
1278 // such as a large viral structure.
1279 //
1280 //  8 - 10        Integer       serial         Serial number.
1281 // 11 - 20        Real(10.6)    m[n][1]        Mn1
1282 // 21 - 30        Real(10.6)    m[n][2]        Mn2
1283 // 31 - 40        Real(10.6)    m[n][3]        Mn3
1284 // 21 - 30        Real(10.6)    v[n]           Vn
1285 // 60             Integer       iGiven         1 if coordinates for the representations which are
1286 //                                              approximately related by the transformations of the
1287 //                                              molecule are contained in the entry. Otherwise, blank.
1288 // =================================================================================
1289                 StringBuilder MTRX1 = new StringBuilder(line.substring(11, 55));
1290                 properties.addProperty("MTRIX1", MTRX1);
1291                 break;
1292               case MTRIX2:
1293                 StringBuilder MTRX2 = new StringBuilder(line.substring(11, 55));
1294                 properties.addProperty("MTRIX2", MTRX2);
1295                 break;
1296               case MTRIX3:
1297                 StringBuilder MTRX3 = new StringBuilder(line.substring(11, 55));
1298                 properties.addProperty("MTRIX3", MTRX3);
1299                 break;
1300               case REMARK:
1301                 remarkLines.add(line.trim());
1302                 if (line.contains("Lambda:")) {
1303                   Matcher m = lambdaPattern.matcher(line);
1304                   if (m.find()) {
1305                     lastReadLambda = Double.parseDouble(m.group(1));
1306                   }
1307                 }
1308 // =================================================================================
1309 // REMARK 350: presents all transformations, both crystallographic and non-crystallographic,
1310 // needed to generate the biomolecule. These transformations operate on the coordinates in the
1311 // entry. Both author and computational descriptions of assemblies are provided, if applicable.
1312 // For strict ncs case where more than one assembly presents in asymmetric unit, only one
1313 // chain with unit matrix will reported in REMARK 350, the other chain will be generated
1314 // by rotation and translation.
1315 //
1316 // 20 - 23        Integer       serial         Serial number.
1317 // 24 - 33        Real(10.6)    m[n][1]        Mn1
1318 // 34 - 43        Real(10.6)    m[n][2]        Mn2
1319 // 44 - 53        Real(10.6)    m[n][3]        Mn3
1320 // 59 - 68        Real(10.6)    v[n]           Vn
1321 // =================================================================================
1322                 if (line.length() >= 68) {
1323                   String remarkType = line.substring(7, 10).trim();
1324                   if (remarkType.matches("\\d+") && parseInt(remarkType) == 350 && line.substring(13,
1325                       18).equalsIgnoreCase("BIOMT")) {
1326                     properties.addProperty("BIOMTn", new StringBuilder(line.substring(24, 68)));
1327                   }
1328                 }
1329                 break;
1330               default:
1331                 break;
1332             }
1333             line = br.readLine();
1334           }
1335 
1336         } catch (FileNotFoundException fileNotFoundException) {
1337           logger.log(Level.SEVERE, " PDB file not found", fileNotFoundException);
1338         }
1339       }
1340       xyzIndex--;
1341       setFileRead(true);
1342     } catch (IOException e) {
1343       logger.exiting(PDBFilter.class.getName(), "readFile", e);
1344       return false;
1345     }
1346 
1347     // Locate disulfide bonds; bond parameters are assigned below.
1348     List<Bond> ssBondList = locateDisulfideBonds(ssbonds, activeMolecularAssembly, pdbToNewResMap);
1349 
1350     // Record the number of atoms read in from the PDB file before applying
1351     // algorithms that may build new atoms.
1352     int pdbAtoms = activeMolecularAssembly.getAtomArray().length;
1353 
1354     // Build missing backbone atoms in loops.
1355     buildMissingResidues(xyzIndex, activeMolecularAssembly, seqRes, dbRef);
1356 
1357     // Assign atom types. Missing side-chains atoms and missing hydrogen will be built in.
1358     bondList = assignAtomTypes(activeMolecularAssembly, fileStandard);
1359 
1360     // Assign disulfide bonds parameters and log their creation.
1361     buildDisulfideBonds(ssBondList, activeMolecularAssembly, bondList);
1362 
1363     // Finally, re-number the atoms if missing atoms were created.
1364     int currentN = activeMolecularAssembly.getAtomArray().length;
1365     boolean renumber = forceField.getBoolean("renumber-pdb", false);
1366     if (pdbAtoms != currentN) {
1367       logger.info(format(" Renumbering PDB file due to built atoms (%d vs %d)", currentN, pdbAtoms));
1368       numberAtoms(activeMolecularAssembly);
1369     } else if (renumber) {
1370       logger.info(" Renumbering PDB file due to renumber-pdb flag.");
1371       numberAtoms(activeMolecularAssembly);
1372     }
1373     return true;
1374   }
1375 
1376   /** {@inheritDoc} */
1377   @Override
1378   public boolean readNext() {
1379     return readNext(false);
1380   }
1381 
1382   /** {@inheritDoc} */
1383   @Override
1384   public boolean readNext(boolean resetPosition) {
1385     return readNext(resetPosition, false);
1386   }
1387 
1388   /** {@inheritDoc} */
1389   @Override
1390   public boolean readNext(boolean resetPosition, boolean print) {
1391     return readNext(resetPosition, print, true);
1392   }
1393 
1394   /** {@inheritDoc} */
1395   @Override
1396   public boolean readNext(boolean resetPosition, boolean print, boolean parse) {
1397     modelsRead = resetPosition ? 1 : modelsRead + 1;
1398     if (!parse) {
1399       if (print) {
1400         logger.info(format(" Skipped Model %d.", modelsRead));
1401       }
1402       return true;
1403     }
1404     remarkLines = new ArrayList<>(remarkLines.size());
1405     // ^ is beginning of line, \\s+ means "one or more whitespace", (\\d+) means match and capture
1406     // one or more digits.
1407     Pattern modelPatt = Pattern.compile("^MODEL\\s+(\\d+)");
1408     boolean eof = true;
1409     for (MolecularAssembly system : systems) {
1410       try {
1411         BufferedReader currentReader;
1412         if (readers.containsKey(system)) {
1413           currentReader = readers.get(system);
1414           try {
1415             if (!currentReader.ready()) {
1416               currentReader = new BufferedReader(new FileReader(readFile));
1417               // Mark the start of the file.
1418               currentReader.mark(0);
1419               readers.remove(system);
1420               readers.put(system, currentReader);
1421             } else if (resetPosition) {
1422               // If the BufferedReader has been opened, and reset is requested, reset the position.
1423               currentReader.reset();
1424             }
1425           } catch (Exception exception) {
1426             // If all structures in the PDB file have been read, the currentReader may have closed.
1427             // The try block will catch this case and reset to the beginning of the file.
1428             currentReader = new BufferedReader(new FileReader(readFile));
1429             // Mark the start of the file.
1430             currentReader.mark(0);
1431             readers.remove(system);
1432             readers.put(system, currentReader);
1433           }
1434         } else {
1435           currentReader = new BufferedReader(new FileReader(readFile));
1436           // Mark the start of the file.
1437           currentReader.mark(0);
1438           readers.put(system, currentReader);
1439         }
1440 
1441         // Skip to appropriate model.
1442         String line = currentReader.readLine();
1443         while (line != null) {
1444           line = line.trim();
1445           Matcher m = modelPatt.matcher(line);
1446           if (m.find()) {
1447             int modelNum = parseInt(m.group(1));
1448             if (modelNum == modelsRead) {
1449               if (print) {
1450                 logger.log(Level.INFO, format(" Reading model %d for %s", modelNum, currentFile));
1451               }
1452               eof = false;
1453               break;
1454             }
1455           }
1456           line = currentReader.readLine();
1457         }
1458         if (eof) {
1459           if (logger.isLoggable(Level.FINEST)) {
1460             logger.log(Level.FINEST, format("\n End of file reached for %s", readFile));
1461           }
1462           currentReader.close();
1463           return false;
1464         }
1465 
1466         // Begin parsing the model.
1467         boolean modelDone = false;
1468         line = currentReader.readLine();
1469         while (line != null) {
1470           line = line.trim();
1471           String recID = line.substring(0, Math.min(6, line.length())).trim();
1472           try {
1473             Record record = Record.valueOf(recID);
1474             boolean hetatm = true;
1475             switch (record) {
1476               // =============================================================================
1477               //
1478               //  7 - 11        Integer       serial       Atom serial number.
1479               // 13 - 16        Atom          name         Atom name.
1480               // 17             Character     altLoc       Alternate location indicator.
1481               // 18 - 20        Residue name  resName      Residue name.
1482               // 22             Character     chainID      Chain identifier.
1483               // 23 - 26        Integer       resSeq       Residue sequence number.
1484               // 27             AChar         iCode        Code for insertion of residues.
1485               // 31 - 38        Real(8.3)     x            Orthogonal coordinates for X in
1486               // Angstroms.
1487               // 39 - 46        Real(8.3)     y            Orthogonal coordinates for Y in
1488               // Angstroms.
1489               // 47 - 54        Real(8.3)     z            Orthogonal coordinates for Z in
1490               // Angstroms.
1491               // 55 - 60        Real(6.2)     occupancy    Occupancy.
1492               // 61 - 66        Real(6.2)     tempFactor   Temperature factor.
1493               // 77 - 78        LString(2)    element      Element symbol, right-justified.
1494               // 79 - 80        LString(2)    charge       Charge  on the atom.
1495               // =============================================================================
1496               //         1         2         3         4         5         6         7
1497               // 123456789012345678901234567890123456789012345678901234567890123456789012345678
1498               // ATOM      1  N   ILE A  16      60.614  71.140 -10.592  1.00  7.38           N
1499               // ATOM      2  CA  ILE A  16      60.793  72.149  -9.511  1.00  6.91           C
1500               case ATOM:
1501                 hetatm = false;
1502               case HETATM:
1503                 String name = line.substring(12, 16).trim();
1504                 if (name.toUpperCase().contains("1H") || name.toUpperCase().contains("2H")
1505                     || name.toUpperCase().contains("3H")) {
1506                   // VERSION3_2 is presently just a placeholder for "anything non-standard".
1507                   fileStandard = VERSION3_2;
1508                 }
1509                 Character altLoc = line.substring(16, 17).toUpperCase().charAt(0);
1510                 if (!altLoc.equals(' ') && !altLoc.equals(currentAltLoc)) {
1511                   break;
1512                 }
1513                 // if (!altLoc.equals(' ') && !altLoc.equals('A') && !altLoc.equals(currentAltLoc)) {
1514                 //  break;
1515                 // }
1516                 String resName = line.substring(17, 20).trim();
1517                 Character chainID = line.substring(21, 22).charAt(0);
1518                 String segID = getExistingSegID(chainID);
1519                 int resSeq = Hybrid36.decode(4, line.substring(22, 26));
1520                 double[] d = new double[3];
1521                 d[0] = parseDouble(line.substring(30, 38).trim());
1522                 d[1] = parseDouble(line.substring(38, 46).trim());
1523                 d[2] = parseDouble(line.substring(46, 54).trim());
1524                 double occupancy = 1.0;
1525                 double tempFactor = 1.0;
1526                 Atom newAtom = new Atom(0, name, altLoc, d, resName, resSeq, chainID, occupancy,
1527                     tempFactor, segID);
1528                 newAtom.setHetero(hetatm);
1529                 // Check if this is a modified residue.
1530                 if (modRes.containsKey(resName.toUpperCase())) {
1531                   newAtom.setModRes(true);
1532                 }
1533 
1534                 Atom returnedAtom = activeMolecularAssembly.findAtom(newAtom);
1535                 if (returnedAtom != null) {
1536                   returnedAtom.setXYZ(d);
1537                   double[] retXYZ = new double[3];
1538                   returnedAtom.getXYZ(retXYZ);
1539                 } else {
1540                   String message = format(" Could not find atom %s in assembly", newAtom);
1541                   if (dieOnMissingAtom) {
1542                     logger.severe(message);
1543                   } else {
1544                     logger.warning(message);
1545                   }
1546                 }
1547                 break;
1548               case CRYST1:
1549                 // =============================================================================
1550                 // The CRYST1 record presents the unit cell parameters, space group, and Z
1551                 // value. If the structure was not determined by crystallographic means, CRYST1
1552                 // simply provides the unitary values, with an appropriate REMARK.
1553                 //
1554                 //  7 - 15       Real(9.3)     a              a (Angstroms).
1555                 // 16 - 24       Real(9.3)     b              b (Angstroms).
1556                 // 25 - 33       Real(9.3)     c              c (Angstroms).
1557                 // 34 - 40       Real(7.2)     alpha          alpha (degrees).
1558                 // 41 - 47       Real(7.2)     beta           beta (degrees).
1559                 // 48 - 54       Real(7.2)     gamma          gamma (degrees).
1560                 // 56 - 66       LString       sGroup         Space  group.
1561                 // 67 - 70       Integer       z              Z value.
1562                 // =============================================================================
1563                 logger.fine(" Crystal record found.");
1564                 if (line.length() < 55) {
1565                   logger.severe(" CRYST1 record is improperly formatted.");
1566                 }
1567                 double aaxis = parseDouble(line.substring(6, 15).trim());
1568                 double baxis = parseDouble(line.substring(15, 24).trim());
1569                 double caxis = parseDouble(line.substring(24, 33).trim());
1570                 double alpha = parseDouble(line.substring(33, 40).trim());
1571                 double beta = parseDouble(line.substring(40, 47).trim());
1572                 double gamma = parseDouble(line.substring(47, 54).trim());
1573                 int limit = min(line.length(), 66);
1574                 String sg = line.substring(55, limit).trim();
1575 //                properties.clearProperty("a-axis");
1576 //                properties.clearProperty("b-axis");
1577 //                properties.clearProperty("c-axis");
1578 //                properties.clearProperty("alpha");
1579 //                properties.clearProperty("beta");
1580 //                properties.clearProperty("gamma");
1581 //                properties.clearProperty("spacegroup");
1582 //
1583 //                properties.addProperty("a-axis", aaxis);
1584 //                properties.addProperty("b-axis", baxis);
1585 //                properties.addProperty("c-axis", caxis);
1586 //                properties.addProperty("alpha", alpha);
1587 //                properties.addProperty("beta", beta);
1588 //                properties.addProperty("gamma", gamma);
1589 //                properties.addProperty("spacegroup", SpaceGroupInfo.pdb2ShortName(sg));
1590                 Crystal crystal = activeMolecularAssembly.getCrystal();
1591                 SpaceGroup spaceGroup = SpaceGroupDefinitions.spaceGroupFactory(sg);
1592                 if (Objects.equals(crystal.spaceGroup.shortName, spaceGroup.shortName)) {
1593                   crystal.changeUnitCellParameters(aaxis, baxis, caxis, alpha, beta, gamma);
1594                 } else {
1595                   // TODO: Handle changes in space groups... Means recalculating force field terms.
1596                   logger.warning(format(" Original space group %s could not be changed to %s",
1597                       crystal.spaceGroup.shortName, spaceGroup.shortName));
1598                 }
1599                 break;
1600               case ENDMDL:
1601               case END: // Technically speaking, END should be at the end of the file, not end of
1602                 // the model.
1603                 logger.log(Level.FINE, format(" Model %d successfully read", modelsRead));
1604                 modelDone = true;
1605                 break;
1606               case REMARK:
1607                 remarkLines.add(line.trim());
1608                 if (line.contains("Lambda:")) {
1609                   Matcher m = lambdaPattern.matcher(line);
1610                   if (m.find()) {
1611                     lastReadLambda = Double.parseDouble(m.group(1));
1612                   }
1613                 }
1614                 break;
1615               default:
1616                 break;
1617             }
1618           } catch (Exception ex) {
1619             // Do nothing; it's not an ATOM/HETATM line.
1620           }
1621           if (modelDone) {
1622             break;
1623           }
1624           line = currentReader.readLine();
1625         }
1626         return true;
1627       } catch (IOException ex) {
1628         logger.info(
1629             format(" Exception in parsing frame %d of %s:" + " %s", modelsRead, system.toString(),
1630                 ex));
1631       }
1632     }
1633     return false;
1634   }
1635 
1636   /**
1637    * Specify the alternate location.
1638    *
1639    * @param molecularAssembly The MolecularAssembly to populate.
1640    * @param altLoc The alternate location to use.
1641    */
1642   public void setAltID(MolecularAssembly molecularAssembly, Character altLoc) {
1643     setMolecularSystem(molecularAssembly);
1644     currentAltLoc = altLoc;
1645   }
1646 
1647   /**
1648    * Sets whether this PDBFilter should log each time it saves to a file.
1649    *
1650    * @param logWrites a boolean.
1651    */
1652   public void setLogWrites(boolean logWrites) {
1653     this.logWrites = logWrites;
1654   }
1655 
1656   /**
1657    * setModelNumbering.
1658    *
1659    * @param modelsWritten the number of models written.
1660    */
1661   public void setModelNumbering(int modelsWritten) {
1662     this.modelsWritten = modelsWritten;
1663   }
1664 
1665   public void setLMN(int[] lmn) {
1666     if(lmn[0] >= 1 && lmn[1] >= 1 && lmn[2] >= 1){
1667       this.lmn = lmn;
1668     }else{
1669       // Provided dimensions are not handled. Revert to P1.
1670       this.lmn = new int[]{1,1,1};
1671     }
1672   }
1673 
1674   /**
1675    * setSymOp.
1676    *
1677    * @param symOp a int.
1678    */
1679   public void setSymOp(int symOp) {
1680     this.nSymOp = symOp;
1681   }
1682 
1683   /**
1684    * Expand the current system to P1 during the save operation.
1685    *
1686    * @param file The file to write.
1687    * @return Return true on a successful write.
1688    */
1689   public boolean writeFileAsP1(File file) {
1690     // XYZ File First Line
1691     final int l = lmn[0];
1692     final int m = lmn[1];
1693     final int n = lmn[2];
1694     final int numReplicates = l * m * n;
1695     Crystal crystal = activeMolecularAssembly.getCrystal();
1696     int nSymOps = crystal.getUnitCell().spaceGroup.getNumberOfSymOps();
1697 
1698     if (nSymOps == 1 && l <= 1 && m <= 1 && n <= 1) {
1699       // This is a P1 system.
1700       if (!writeFile(file, false)) {
1701         logger.info(format(" Save failed for %s", activeMolecularAssembly));
1702         return false;
1703       } else {
1704         return true;
1705       }
1706     } else {
1707       Polymer[] polymers = activeMolecularAssembly.getChains();
1708       int chainCount = 0;
1709       for (Polymer polymer : polymers) {
1710         Character chainID = Polymer.CHAIN_IDS.charAt(chainCount++);
1711         polymer.setChainID(chainID);
1712         polymer.setSegID(chainID.toString());
1713       }
1714       nSymOp = 0;
1715       logWrites = false;
1716       boolean writeEnd = false;
1717       if (!writeFile(file, false, false, writeEnd)) {
1718         logger.info(format(" Save failed for %s", activeMolecularAssembly));
1719         return false;
1720       } else {
1721         for (int i = 0; i < l; i++) {
1722           for (int j = 0; j < m; j++) {
1723             for (int k = 0; k < n; k++) {
1724               lValue = i;
1725               mValue = j;
1726               nValue = k;
1727               for (int iSym = 0; iSym < nSymOps; iSym++) {
1728                 nSymOp = iSym;
1729                 for (Polymer polymer : polymers) {
1730                   Character chainID = Polymer.CHAIN_IDS.charAt(chainCount++);
1731                   polymer.setChainID(chainID);
1732                   polymer.setSegID(chainID.toString());
1733                 }
1734                 // If the last sym op to be written.
1735                 writeEnd = iSym == nSymOps - 1 && i == l - 1 && j == m - 1 && k == n - 1;
1736                 if (!writeFile(file, true, false, writeEnd)) {
1737                   logger.info(format(" Save failed for %s", activeMolecularAssembly));
1738                   return false;
1739                 }
1740               }
1741             }
1742           }
1743         }
1744       }
1745 
1746       // Reset the chainIDs.
1747       chainCount = 0;
1748       for (Polymer polymer : polymers) {
1749         Character chainID = Polymer.CHAIN_IDS.charAt(chainCount++);
1750         polymer.setChainID(chainID);
1751         polymer.setSegID(chainID.toString());
1752       }
1753 
1754     }
1755 
1756     return true;
1757   }
1758 
1759   /**
1760    * writeFile
1761    *
1762    * @param saveFile a {@link java.io.File} object.
1763    * @param append Whether to append to saveFile (vs over-write).
1764    * @param printLinear Ignored (remains to present a different method signature).
1765    * @param writeEnd True if this is the final model.
1766    * @return Success of writing.
1767    */
1768   public boolean writeFile(File saveFile, boolean append, boolean printLinear, boolean writeEnd) {
1769     return writeFile(saveFile, append, Collections.emptySet(), writeEnd, true);
1770   }
1771 
1772   /**
1773    * writeFile
1774    *
1775    * @param saveFile a {@link java.io.File} object to save to.
1776    * @param append Whether to append to saveFile (vs over-write).
1777    * @param toExclude A {@link java.util.Set} of {@link ffx.potential.bonded.Atom}s to exclude
1778    *     from writing.
1779    * @param writeEnd True if this is the final model.
1780    * @param versioning True if the file being saved to should be versioned. False if the file
1781    *     being saved to should be overwritten.
1782    * @return Success of writing.
1783    */
1784   public boolean writeFile(File saveFile, boolean append, Set<Atom> toExclude, boolean writeEnd,
1785       boolean versioning) {
1786     return writeFile(saveFile, append, toExclude, writeEnd, versioning, null);
1787   }
1788 
1789   /**
1790    * writeFile
1791    *
1792    * @param saveFile a {@link java.io.File} object to save to.
1793    * @param append Whether to append to saveFile (vs over-write).
1794    * @param toExclude A {@link java.util.Set} of {@link ffx.potential.bonded.Atom}s to exclude
1795    *     from writing.
1796    * @param writeEnd True if this is the final model.
1797    * @param versioning True if the file being saved to should be versioned. False if the file
1798    *     being saved to should be overwritten.
1799    * @param extraLines Extra comment/header lines to write.
1800    * @return Success of writing.
1801    */
1802   public boolean writeFile(File saveFile, boolean append, Set<Atom> toExclude, boolean writeEnd,
1803       boolean versioning, String[] extraLines) {
1804     if (standardizeAtomNames) {
1805       logger.info(" Setting atom names to PDB standard.");
1806       renameAtomsToPDBStandard(activeMolecularAssembly);
1807     }
1808     final Set<Atom> atomExclusions = toExclude == null ? Collections.emptySet() : toExclude;
1809     if (saveFile == null) {
1810       return false;
1811     }
1812     if (vdwH) {
1813       logger.info(" Saving hydrogen to van der Waals centers instead of nuclear locations.");
1814     }
1815     if (nSymOp > -1) {
1816       logger.info(format(" Saving atoms using the symmetry operator:\n%s\n",
1817           activeMolecularAssembly.getCrystal().getUnitCell().spaceGroup.getSymOp(nSymOp)
1818               .toString()));
1819     }
1820 
1821     // Create StringBuilders for ATOM, ANISOU and TER records that can be reused.
1822     StringBuilder sb = new StringBuilder("ATOM  ");
1823     StringBuilder anisouSB = new StringBuilder("ANISOU");
1824     StringBuilder terSB = new StringBuilder("TER   ");
1825     StringBuilder model = null;
1826     for (int i = 6; i < 80; i++) {
1827       sb.append(' ');
1828       anisouSB.append(' ');
1829       terSB.append(' ');
1830     }
1831 
1832     File newFile = saveFile;
1833     if (!append) {
1834       if (versioning) {
1835         newFile = version(saveFile);
1836       }
1837     } else if (modelsWritten >= 0) {
1838       model = new StringBuilder(format("MODEL     %-4d", ++modelsWritten));
1839       model.append(repeat(" ", 65));
1840     }
1841     activeMolecularAssembly.setFile(newFile);
1842     if (activeMolecularAssembly.getName() == null) {
1843       activeMolecularAssembly.setName(newFile.getName());
1844     }
1845     if (logWrites) {
1846       logger.log(Level.INFO, " Saving {0}", newFile.getName());
1847     }
1848 
1849     try (FileWriter fw = new FileWriter(newFile, append);
1850         BufferedWriter bw = new BufferedWriter(fw)) {
1851       /*
1852        Will come before CRYST1 and ATOM records, but after anything
1853        written by writeFileWithHeader (particularly X-ray refinement statistics).
1854       */
1855       String[] headerLines = activeMolecularAssembly.getHeaderLines();
1856       for (String line : headerLines) {
1857         bw.write(format("%s\n", line));
1858       }
1859       if (extraLines != null) {
1860         if (rotamerTitration && extraLines[0].contains("REMARK")) {
1861           for (String line : extraLines) {
1862             bw.write(line + "\n");
1863           }
1864         } else {
1865           for (String line : extraLines) {
1866             bw.write(format("REMARK 999 %s\n", line));
1867           }
1868         }
1869       }
1870       if (model != null) {
1871         bw.write(model.toString());
1872         bw.newLine();
1873       }
1874       // =============================================================================
1875       // The CRYST1 record presents the unit cell parameters, space group, and Z
1876       // value. If the structure was not determined by crystallographic means, CRYST1
1877       // simply provides the unitary values, with an appropriate REMARK.
1878       //
1879       //  7 - 15       Real(9.3)     a              a (Angstroms).
1880       // 16 - 24       Real(9.3)     b              b (Angstroms).
1881       // 25 - 33       Real(9.3)     c              c (Angstroms).
1882       // 34 - 40       Real(7.2)     alpha          alpha (degrees).
1883       // 41 - 47       Real(7.2)     beta           beta (degrees).
1884       // 48 - 54       Real(7.2)     gamma          gamma (degrees).
1885       // 56 - 66       LString       sGroup         Space  group.
1886       // 67 - 70       Integer       z              Z value.
1887       // =============================================================================
1888       if (nSymOp < 0) {
1889         // Write out the unit cell.
1890         Crystal crystal = activeMolecularAssembly.getCrystal();
1891         if (crystal != null && !crystal.aperiodic()) {
1892           Crystal c = crystal.getUnitCell();
1893           if (lmn[0] > 0 || lmn[1] > 0 || lmn[2] > 0) {
1894             c.a = c.a * lmn[0];
1895             c.b = c.b * lmn[1];
1896             c.c = c.c * lmn[2];
1897           }
1898           bw.write(c.toCRYST1());
1899         }
1900       } else if (nSymOp == 0) {
1901         // Write a P1 cell.
1902         Crystal crystal = activeMolecularAssembly.getCrystal();
1903         if (crystal != null && !crystal.aperiodic()) {
1904           Crystal c = crystal.getUnitCell();
1905           Crystal p1 = new Crystal((lmn[0]>0)? c.a * lmn[0] : c.a, (lmn[1]>0)? c.b * lmn[1] : c.b, (lmn[2]>0)? c.c * lmn[2] : c.c, c.alpha, c.beta, c.gamma, "P1");
1906           bw.write(p1.toCRYST1());
1907         }
1908       }
1909       // =============================================================================
1910       // The SSBOND record identifies each disulfide bond in protein and polypeptide
1911       // structures by identifying the two residues involved in the bond.
1912       // The disulfide bond distance is included after the symmetry operations at
1913       // the end of the SSBOND record.
1914       //
1915       //  8 - 10        Integer         serNum       Serial number.
1916       // 12 - 14        LString(3)      "CYS"        Residue name.
1917       // 16             Character       chainID1     Chain identifier.
1918       // 18 - 21        Integer         seqNum1      Residue sequence number.
1919       // 22             AChar           icode1       Insertion code.
1920       // 26 - 28        LString(3)      "CYS"        Residue name.
1921       // 30             Character       chainID2     Chain identifier.
1922       // 32 - 35        Integer         seqNum2      Residue sequence number.
1923       // 36             AChar           icode2       Insertion code.
1924       // 60 - 65        SymOP           sym1         Symmetry oper for 1st resid
1925       // 67 - 72        SymOP           sym2         Symmetry oper for 2nd resid
1926       // 74 – 78        Real(5.2)      Length        Disulfide bond distance
1927       //
1928       // If SG of cysteine is disordered then there are possible alternate linkages.
1929       // wwPDB practice is to put together all possible SSBOND records. This is
1930       // problematic because the alternate location identifier is not specified in
1931       // the SSBOND record.
1932       // =============================================================================
1933       int serNum = 1;
1934       Polymer[] polymers = activeMolecularAssembly.getChains();
1935       if (polymers != null) {
1936         for (Polymer polymer : polymers) {
1937           List<Residue> residues = polymer.getResidues();
1938           for (Residue residue : residues) {
1939             if (residue.getName().equalsIgnoreCase("CYS")) {
1940               List<Atom> cysAtoms = residue.getAtomList().stream()
1941                   .filter(a -> !atomExclusions.contains(a)).toList();
1942               Atom SG1 = null;
1943               for (Atom atom : cysAtoms) {
1944                 String atName = atom.getName().toUpperCase();
1945                 if (atName.equals("SG") || atName.equals("SH")
1946                     || atom.getAtomType().atomicNumber == 16) {
1947                   SG1 = atom;
1948                   break;
1949                 }
1950               }
1951               List<Bond> bonds = SG1.getBonds();
1952               for (Bond bond : bonds) {
1953                 Atom SG2 = bond.get1_2(SG1);
1954                 if (SG2.getAtomType().atomicNumber == 16 && !atomExclusions.contains(SG2)) {
1955                   if (SG1.getIndex() < SG2.getIndex()) {
1956                     bond.energy(false);
1957                     bw.write(format("SSBOND %3d CYS %1s %4s    CYS %1s %4s %36s %5.2f\n", serNum++,
1958                         SG1.getChainID().toString(), Hybrid36.encode(4, SG1.getResidueNumber()),
1959                         SG2.getChainID().toString(), Hybrid36.encode(4, SG2.getResidueNumber()), "",
1960                         bond.getValue()));
1961                   }
1962                 }
1963               }
1964             }
1965           }
1966         }
1967       }
1968       // =============================================================================
1969       //
1970       //  7 - 11        Integer       serial       Atom serial number.
1971       // 13 - 16        Atom          name         Atom name.
1972       // 17             Character     altLoc       Alternate location indicator.
1973       // 18 - 20        Residue name  resName      Residue name.
1974       // 22             Character     chainID      Chain identifier.
1975       // 23 - 26        Integer       resSeq       Residue sequence number.
1976       // 27             AChar         iCode        Code for insertion of residues.
1977       // 31 - 38        Real(8.3)     x            Orthogonal coordinates for X in Angstroms.
1978       // 39 - 46        Real(8.3)     y            Orthogonal coordinates for Y in Angstroms.
1979       // 47 - 54        Real(8.3)     z            Orthogonal coordinates for Z in Angstroms.
1980       // 55 - 60        Real(6.2)     occupancy    Occupancy.
1981       // 61 - 66        Real(6.2)     tempFactor   Temperature factor.
1982       // 77 - 78        LString(2)    element      Element symbol, right-justified.
1983       // 79 - 80        LString(2)    charge       Charge  on the atom.
1984       // =============================================================================
1985       //         1         2         3         4         5         6         7
1986       // 123456789012345678901234567890123456789012345678901234567890123456789012345678
1987       // ATOM      1  N   ILE A  16      60.614  71.140 -10.592  1.00  7.38           N
1988       // ATOM      2  CA  ILE A  16      60.793  72.149  -9.511  1.00  6.91           C
1989       MolecularAssembly[] molecularAssemblies = this.getMolecularAssemblyArray();
1990       int serial = 1;
1991       if (nSymOp > 0) {
1992         serial = serialP1;
1993       }
1994 
1995       // Loop over biomolecular chains
1996       if (polymers != null) {
1997         for (Polymer polymer : polymers) {
1998           currentSegID = polymer.getName();
1999           currentChainID = polymer.getChainID();
2000           sb.setCharAt(21, currentChainID);
2001           // Loop over residues
2002           List<Residue> residues = polymer.getResidues();
2003           for (Residue residue : residues) {
2004             String resName = residue.getName();
2005             if (resName.length() > 3) {
2006               resName = resName.substring(0, 3);
2007             }
2008             int resID = residue.getResidueNumber();
2009             sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
2010             sb.replace(22, 26, format("%4s", Hybrid36.encode(4, resID)));
2011             // Loop over atoms
2012             List<Atom> residueAtoms = residue.getAtomList().stream()
2013                 .filter(a -> !atomExclusions.contains(a)).collect(Collectors.toList());
2014             boolean altLocFound = false;
2015             for (Atom atom : residueAtoms) {
2016               if (mutate) {
2017                 for (Mutation mtn : mutations) {
2018                   if (resID == mtn.resID) {
2019                     if (residue.getBackboneAtoms().contains(atom)) {
2020                       logger.info(format(" MUTATION atom is %d chain %s",serial, currentChainID));
2021                     }
2022                   }
2023                 }
2024               }
2025               writeAtom(atom, serial++, sb, anisouSB, bw);
2026               Character altLoc = atom.getAltLoc();
2027               if (altLoc != null && !altLoc.equals(' ')) {
2028                 altLocFound = true;
2029               }
2030             }
2031             // Write out alternate conformers
2032             if (altLocFound) {
2033               for (int ma = 1; ma < molecularAssemblies.length; ma++) {
2034                 MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
2035                 Polymer altPolymer = altMolecularAssembly.getPolymer(currentChainID, currentSegID, false);
2036                 Residue altResidue = altPolymer.getResidue(resName, resID, false, Residue.ResidueType.AA);
2037                 if (altResidue == null) {
2038                   resName = AminoAcid3.UNK.name();
2039                   altResidue = altPolymer.getResidue(resName, resID, false, Residue.ResidueType.AA);
2040                 }
2041                 residueAtoms = altResidue.getAtomList().stream()
2042                     .filter(a -> !atomExclusions.contains(a)).collect(Collectors.toList());
2043                 for (Atom atom : residueAtoms) {
2044                   if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc()
2045                       .equals('A')) {
2046                     sb.replace(17, 20, padLeft(atom.getResidueName().toUpperCase(), 3));
2047                     writeAtom(atom, serial++, sb, anisouSB, bw);
2048                   }
2049                 }
2050               }
2051             }
2052           }
2053           terSB.replace(6, 11, format("%5s", Hybrid36.encode(5, serial++)));
2054           terSB.replace(12, 16, "    ");
2055           terSB.replace(16, 26, sb.substring(16, 26));
2056           bw.write(terSB.toString());
2057           bw.newLine();
2058         }
2059       }
2060       sb.replace(0, 6, "HETATM");
2061       sb.setCharAt(21, 'A');
2062 
2063       Character chainID = 'A';
2064       if (polymers != null) {
2065         chainID = polymers[0].getChainID();
2066       }
2067       activeMolecularAssembly.setChainIDAndRenumberMolecules(chainID);
2068 
2069       // Loop over molecules, ions and then water.
2070       List<MSNode> molecules = activeMolecularAssembly.getMolecules();
2071       int numMolecules = molecules.size();
2072       for (int i = 0; i < numMolecules; i++) {
2073         Molecule molecule = (Molecule) molecules.get(i);
2074         chainID = molecule.getChainID();
2075         sb.setCharAt(21, chainID);
2076         String resName = molecule.getResidueName();
2077         int resID = molecule.getResidueNumber();
2078         if (resName.length() > 3) {
2079           resName = resName.substring(0, 3);
2080         }
2081         sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
2082         sb.replace(22, 26, format("%4s", Hybrid36.encode(4, resID)));
2083         // List<Atom> moleculeAtoms = molecule.getAtomList();
2084         List<Atom> moleculeAtoms = molecule.getAtomList().stream()
2085             .filter(a -> !atomExclusions.contains(a)).collect(Collectors.toList());
2086         boolean altLocFound = false;
2087         for (Atom atom : moleculeAtoms) {
2088           writeAtom(atom, serial++, sb, anisouSB, bw);
2089           Character altLoc = atom.getAltLoc();
2090           if (altLoc != null && !altLoc.equals(' ')) {
2091             altLocFound = true;
2092           }
2093         }
2094         // Write out alternate conformers
2095         if (altLocFound) {
2096           for (int ma = 1; ma < molecularAssemblies.length; ma++) {
2097             MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
2098             MSNode altmolecule = altMolecularAssembly.getMolecules().get(i);
2099             moleculeAtoms = altmolecule.getAtomList();
2100             for (Atom atom : moleculeAtoms) {
2101               if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc()
2102                   .equals('A')) {
2103                 writeAtom(atom, serial++, sb, anisouSB, bw);
2104               }
2105             }
2106           }
2107         }
2108       }
2109 
2110       List<MSNode> ions = activeMolecularAssembly.getIons();
2111       for (int i = 0; i < ions.size(); i++) {
2112         Molecule ion = (Molecule) ions.get(i);
2113         chainID = ion.getChainID();
2114         sb.setCharAt(21, chainID);
2115         String resName = ion.getResidueName();
2116         int resID = ion.getResidueNumber();
2117         if (resName.length() > 3) {
2118           resName = resName.substring(0, 3);
2119         }
2120         sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
2121         sb.replace(22, 26, format("%4s", Hybrid36.encode(4, resID)));
2122         // List<Atom> ionAtoms = ion.getAtomList();
2123         List<Atom> ionAtoms = ion.getAtomList().stream().filter(a -> !atomExclusions.contains(a))
2124             .collect(Collectors.toList());
2125         boolean altLocFound = false;
2126         for (Atom atom : ionAtoms) {
2127           writeAtom(atom, serial++, sb, anisouSB, bw);
2128           Character altLoc = atom.getAltLoc();
2129           if (altLoc != null && !altLoc.equals(' ')) {
2130             altLocFound = true;
2131           }
2132         }
2133         // Write out alternate conformers
2134         if (altLocFound) {
2135           for (int ma = 1; ma < molecularAssemblies.length; ma++) {
2136             MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
2137             MSNode altion = altMolecularAssembly.getIons().get(i);
2138             ionAtoms = altion.getAtomList();
2139             for (Atom atom : ionAtoms) {
2140               if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc()
2141                   .equals('A')) {
2142                 writeAtom(atom, serial++, sb, anisouSB, bw);
2143               }
2144             }
2145           }
2146         }
2147       }
2148 
2149       List<MSNode> water = activeMolecularAssembly.getWater();
2150       for (int i = 0; i < water.size(); i++) {
2151         Molecule wat = (Molecule) water.get(i);
2152         chainID = wat.getChainID();
2153         sb.setCharAt(21, chainID);
2154         String resName = wat.getResidueName();
2155         int resID = wat.getResidueNumber();
2156         if (resName.length() > 3) {
2157           resName = resName.substring(0, 3);
2158         }
2159         sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
2160         sb.replace(22, 26, format("%4s", Hybrid36.encode(4, resID)));
2161         List<Atom> waterAtoms = wat.getAtomList().stream().filter(a -> !atomExclusions.contains(a))
2162             .collect(Collectors.toList());
2163         boolean altLocFound = false;
2164         for (Atom atom : waterAtoms) {
2165           writeAtom(atom, serial++, sb, anisouSB, bw);
2166           Character altLoc = atom.getAltLoc();
2167           if (altLoc != null && !altLoc.equals(' ')) {
2168             altLocFound = true;
2169           }
2170         }
2171         // Write out alternate conformers
2172         if (altLocFound) {
2173           for (int ma = 1; ma < molecularAssemblies.length; ma++) {
2174             MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
2175             MSNode altwater = altMolecularAssembly.getWater().get(i);
2176             waterAtoms = altwater.getAtomList();
2177             for (Atom atom : waterAtoms) {
2178               if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc()
2179                   .equals('A')) {
2180                 writeAtom(atom, serial++, sb, anisouSB, bw);
2181               }
2182             }
2183           }
2184         }
2185       }
2186 
2187       if (model != null) {
2188         bw.write("ENDMDL");
2189         bw.newLine();
2190       }
2191 
2192       if (writeEnd) {
2193         bw.write("END");
2194         bw.newLine();
2195       }
2196 
2197       if (nSymOp >= 0) {
2198         serialP1 = serial;
2199       }
2200 
2201     } catch (Exception e) {
2202       String message = "Exception writing to file: " + saveFile;
2203       logger.log(Level.WARNING, message, e);
2204       return false;
2205     }
2206     return true;
2207   }
2208 
2209   /**
2210    * {@inheritDoc}
2211    *
2212    * <p>Write out the Atomic information in PDB format.
2213    */
2214   @Override
2215   public boolean writeFile(File saveFile, boolean append) {
2216     return writeFile(saveFile, append, false, true);
2217   }
2218 
2219   public boolean writeFile(File saveFile, boolean append, String[] extraLines) {
2220     return writeFile(saveFile, append, Collections.emptySet(), false, !append, extraLines);
2221   }
2222 
2223   /**
2224    * Writes out the atomic information in PDB format.
2225    *
2226    * @param saveFile The file to save information to.
2227    * @param append True if the current data should be appended to the saveFile (as in arc
2228    *     files).
2229    * @param versioning True if the saveFile should be versioned. False if the saveFile should be
2230    *     overwritten.
2231    * @return Success of writing.
2232    */
2233   public boolean writeFile(File saveFile, boolean append, boolean versioning) {
2234     return writeFile(saveFile, append, Collections.emptySet(), true, versioning);
2235   }
2236 
2237   /**
2238    * writeFileWithHeader.
2239    *
2240    * @param saveFile a {@link java.io.File} object.
2241    * @param header a {@link java.lang.String} object.
2242    * @param append a boolean.
2243    * @return a boolean.
2244    */
2245   public boolean writeFileWithHeader(File saveFile, String header, boolean append) {
2246     if (standardizeAtomNames) {
2247       logger.info(" Setting atom names to PDB standard.");
2248       renameAtomsToPDBStandard(activeMolecularAssembly);
2249     }
2250     activeMolecularAssembly.setFile(saveFile);
2251     activeMolecularAssembly.setName(saveFile.getName());
2252 
2253     try (FileWriter fw = new FileWriter(saveFile, append); BufferedWriter bw = new BufferedWriter(
2254         fw)) {
2255       bw.write(header);
2256       bw.newLine();
2257     } catch (Exception e) {
2258       String message = " Exception writing to file: " + saveFile;
2259       logger.log(Level.WARNING, message, e);
2260       return false;
2261     }
2262     if (writeFile(saveFile, true)) {
2263       logger.log(Level.INFO, " Wrote PDB to file {0}", saveFile.getPath());
2264       return true;
2265     } else {
2266       logger.log(Level.INFO, " Error writing to file {0}", saveFile.getPath());
2267       return false;
2268     }
2269   }
2270 
2271   /**
2272    * writeFileWithHeader.
2273    *
2274    * @param saveFile a {@link java.io.File} object.
2275    * @param header a {@link java.lang.String} object.
2276    * @return a boolean.
2277    */
2278   public boolean writeFileWithHeader(File saveFile, String header) {
2279     return writeFileWithHeader(saveFile, header, true);
2280   }
2281 
2282   /**
2283    * writeFileWithHeader.
2284    *
2285    * @param saveFile a {@link java.io.File} object.
2286    * @param header a {@link java.lang.StringBuilder} object.
2287    * @return a boolean.
2288    */
2289   public boolean writeFileWithHeader(File saveFile, StringBuilder header) {
2290     return writeFileWithHeader(saveFile, header.toString());
2291   }
2292 
2293   /**
2294    * Get unique SegID for possibly duplicate chain IDs.
2295    *
2296    * @param c chain ID just read.
2297    * @return a unique segID.
2298    */
2299   private String getExistingSegID(Character c) {
2300     if (c.equals(' ')) {
2301       c = 'A';
2302     }
2303 
2304     List<String> segIDs = segidMap.get(c);
2305     if (segIDs != null) {
2306       String segID = segIDs.get(0);
2307       if (segIDs.size() > 1) {
2308         logger.log(Level.INFO, format(" Multiple SegIDs for to chain %s; using %s.", c, segID));
2309       }
2310       return segID;
2311     } else {
2312       logger.log(Level.INFO, format(" Creating SegID for to chain %s", c));
2313       return getSegID(c);
2314     }
2315   }
2316 
2317   /**
2318    * Convert possibly duplicate chain IDs into unique segIDs.
2319    *
2320    * @param c chain ID just read.
2321    * @return a unique segID.
2322    */
2323   private String getSegID(Character c) {
2324     if (c.equals(' ')) {
2325       c = 'A';
2326     }
2327 
2328     // If the chain ID has not changed, return the existing segID.
2329     if (c.equals(currentChainID)) {
2330       return currentSegID;
2331     }
2332 
2333     // Loop through existing segIDs to find the first one that is unused.
2334     int count = 0;
2335     for (String segID : segIDs) {
2336       if (segID.endsWith(c.toString())) {
2337         count++;
2338       }
2339     }
2340 
2341     // If the count is greater than 0, then append it.
2342     String newSegID;
2343     if (count == 0) {
2344       newSegID = c.toString();
2345     } else {
2346       newSegID = count + c.toString();
2347     }
2348     segIDs.add(newSegID);
2349     currentChainID = c;
2350     currentSegID = newSegID;
2351 
2352     if (segidMap.containsKey(c)) {
2353       segidMap.get(c).add(newSegID);
2354     } else {
2355       List<String> newChainList = new ArrayList<>();
2356       newChainList.add(newSegID);
2357       segidMap.put(c, newChainList);
2358     }
2359 
2360     return newSegID;
2361   }
2362 
2363   /**
2364    * writeAtom
2365    *
2366    * @param atom a {@link ffx.potential.bonded.Atom} object.
2367    * @param serial a int.
2368    * @param sb a {@link java.lang.StringBuilder} object.
2369    * @param anisouSB a {@link java.lang.StringBuilder} object.
2370    * @param bw a {@link java.io.BufferedWriter} object.
2371    * @throws java.io.IOException if any.
2372    */
2373   private void writeAtom(Atom atom, int serial, StringBuilder sb, StringBuilder anisouSB,
2374       BufferedWriter bw) throws IOException {
2375     String name = atom.getName();
2376     int nameLength = name.length();
2377     if (nameLength > 4) {
2378       name = name.substring(0, 4);
2379     } else if (nameLength == 1) {
2380       name = name + "  ";
2381     } else if (nameLength == 2) {
2382       if (atom.getAtomType().valence == 0) {
2383         name = name + "  ";
2384       } else {
2385         name = name + " ";
2386       }
2387     }
2388     double[] xyz = vdwH ? atom.getRedXYZ() : atom.getXYZ(null);
2389     if (nSymOp >= 0) {
2390       Crystal crystal = activeMolecularAssembly.getCrystal().getUnitCell();
2391       SymOp symOp = crystal.spaceGroup.getSymOp(nSymOp);
2392       double[] newXYZ = new double[xyz.length];
2393       crystal.applySymOp(xyz, newXYZ, symOp);
2394       if (lValue > 0 || mValue > 0 || nValue > 0) {
2395         double[] translation = new double[] {lValue, mValue, nValue};
2396         crystal.getUnitCell().toCartesianCoordinates(translation, translation);
2397         newXYZ[0] += translation[0];
2398         newXYZ[1] += translation[1];
2399         newXYZ[2] += translation[2];
2400       }
2401       xyz = newXYZ;
2402     }
2403     sb.replace(6, 16, format("%5s " + padLeft(name.toUpperCase(), 4), Hybrid36.encode(5, serial)));
2404     Character altLoc = atom.getAltLoc();
2405     sb.setCharAt(16, Objects.requireNonNullElse(altLoc, ' '));
2406 
2407 
2408     /*
2409      * On the following code:
2410      * #1: StringBuilder.replace will allow for longer strings, expanding the StringBuilder's length if necessary.
2411      *
2412      * #2: sb was never re-initialized, so if there was overflow,
2413      * sb would continue to be > 80 characters long, resulting in broken PDB files
2414      *
2415      * #3: It may be wiser to have XYZ coordinates result in shutdown, not
2416      * truncation of coordinates. #4: Excessive B-factors aren't much of an
2417      * issue; if the B-factor is past 999.99, that's the difference between
2418      * "density extends to Venus" and "density extends to Pluto".
2419      */
2420     StringBuilder decimals = new StringBuilder();
2421     for (int i = 0; i < 3; i++) {
2422       try {
2423         decimals.append(StringUtils.fwFpDec(xyz[i], 8, 3));
2424       } catch (IllegalArgumentException ex) {
2425         String newValue = StringUtils.fwFpTrunc(xyz[i], 8, 3);
2426         logger.info(format(" XYZ %d coordinate %8.3f for atom %s "
2427             + "overflowed bounds of 8.3f string specified by PDB "
2428             + "format; truncating value to %s", i, xyz[i], atom, newValue));
2429         decimals.append(newValue);
2430       }
2431     }
2432     try {
2433       decimals.append(StringUtils.fwFpDec(atom.getOccupancy(), 6, 2));
2434     } catch (IllegalArgumentException ex) {
2435       logger.severe(
2436           format(" Occupancy %f for atom %s is impossible; " + "value must be between 0 and 1",
2437               atom.getOccupancy(), atom));
2438     }
2439     try {
2440       decimals.append(StringUtils.fwFpDec(atom.getTempFactor(), 6, 2));
2441     } catch (IllegalArgumentException ex) {
2442       String newValue = StringUtils.fwFpTrunc(atom.getTempFactor(), 6, 2);
2443       logger.info(format(" Atom temp factor %6.2f for atom %s overflowed "
2444               + "bounds of 6.2f string specified by PDB format; truncating " + "value to %s",
2445           atom.getTempFactor(), atom, newValue));
2446       decimals.append(newValue);
2447     }
2448     sb.replace(30, 66, decimals.toString());
2449 
2450     name = Atom.ElementSymbol.values()[atom.getAtomicNumber() - 1].toString();
2451     name = name.toUpperCase();
2452     if (atom.isDeuterium()) {
2453       name = "D";
2454     }
2455     sb.replace(76, 78, padLeft(name, 2));
2456     sb.replace(78, 80, format("%2d", 0));
2457     bw.write(sb.toString());
2458     bw.newLine();
2459     // =============================================================================
2460     //  1 - 6        Record name   "ANISOU"
2461     //  7 - 11       Integer       serial         Atom serial number.
2462     // 13 - 16       Atom          name           Atom name.
2463     // 17            Character     altLoc         Alternate location indicator
2464     // 18 - 20       Residue name  resName        Residue name.
2465     // 22            Character     chainID        Chain identifier.
2466     // 23 - 26       Integer       resSeq         Residue sequence number.
2467     // 27            AChar         iCode          Insertion code.
2468     // 29 - 35       Integer       u[0][0]        U(1,1)
2469     // 36 - 42       Integer       u[1][1]        U(2,2)
2470     // 43 - 49       Integer       u[2][2]        U(3,3)
2471     // 50 - 56       Integer       u[0][1]        U(1,2)
2472     // 57 - 63       Integer       u[0][2]        U(1,3)
2473     // 64 - 70       Integer       u[1][2]        U(2,3)
2474     // 77 - 78       LString(2)    element        Element symbol, right-justified.
2475     // 79 - 80       LString(2)    charge         Charge on the atom.
2476     // =============================================================================
2477     double[] anisou = atom.getAnisou(null);
2478     if (anisou != null) {
2479       anisouSB.replace(6, 80, sb.substring(6, 80));
2480       anisouSB.replace(28, 70,
2481           format("%7d%7d%7d%7d%7d%7d", (int) (anisou[0] * 1e4), (int) (anisou[1] * 1e4),
2482               (int) (anisou[2] * 1e4), (int) (anisou[3] * 1e4), (int) (anisou[4] * 1e4),
2483               (int) (anisou[5] * 1e4)));
2484       bw.write(anisouSB.toString());
2485       bw.newLine();
2486     }
2487   }
2488 
2489   /** PDB records that are recognized. */
2490   private enum Record {
2491     ANISOU, ATOM, CONECT, CRYST1, DBREF, END, MODEL, ENDMDL, HELIX, HETATM, LINK, MTRIX1, MTRIX2, MTRIX3, MODRES, SEQRES, SHEET, SSBOND, REMARK
2492   }
2493 
2494   /** Presently, VERSION3_3 is default, and VERSION3_2 is anything non-standard. */
2495   public enum PDBFileStandard {
2496     VERSION2_3, VERSION3_0, VERSION3_1, VERSION3_2, VERSION3_3
2497   }
2498 
2499   public static class Mutation {
2500 
2501     /** Residue ID of the residue to mutate. */
2502     final int resID;
2503     /** Residue name after mutation. */
2504     final String resName;
2505     /** Character for the chain ID of the residue that will be mutated. */
2506     final char chainChar;
2507 
2508     public Mutation(int resID, char chainChar, String newResName) {
2509       newResName = newResName.toUpperCase();
2510       if (newResName.length() != 3) {
2511         logger.log(Level.WARNING, format("Invalid mutation target: %s.", newResName));
2512       }
2513       int isAA = AminoAcidUtils.getAminoAcidNumber(newResName);
2514       int isNA = NucleicAcidUtils.getNucleicAcidNumber(newResName);
2515       if (isAA == -1 && isNA == -1) {
2516         logger.log(Level.WARNING, format("Invalid mutation target: %s.", newResName));
2517       }
2518       this.resID = resID;
2519       this.chainChar = chainChar;
2520       this.resName = newResName;
2521     }
2522   }
2523 }