View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2024.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.potential.openmm;
39  
40  import ffx.openmm.Force;
41  import ffx.openmm.amoeba.GeneralizedKirkwoodForce;
42  import ffx.potential.bonded.Atom;
43  import ffx.potential.nonbonded.GeneralizedKirkwood;
44  import ffx.potential.parameters.ForceField;
45  import ffx.potential.parameters.MultipoleType;
46  
47  import java.util.logging.Level;
48  import java.util.logging.Logger;
49  
50  import static edu.uiowa.jopenmm.OpenMMAmoebaLibrary.OpenMM_AngstromsPerNm;
51  import static edu.uiowa.jopenmm.OpenMMAmoebaLibrary.OpenMM_KJPerKcal;
52  import static edu.uiowa.jopenmm.OpenMMAmoebaLibrary.OpenMM_NmPerAngstrom;
53  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_Boolean.OpenMM_False;
54  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_Boolean.OpenMM_True;
55  import static java.lang.String.format;
56  
57  public class AmoebaGeneralizedKirkwoodForce extends GeneralizedKirkwoodForce {
58  
59    private static final Logger logger = Logger.getLogger(AmoebaGeneralizedKirkwoodForce.class.getName());
60  
61    public AmoebaGeneralizedKirkwoodForce(OpenMMEnergy openMMEnergy) {
62      GeneralizedKirkwood gk = openMMEnergy.getGK();
63      if (gk == null) {
64        destroy();
65        return;
66      }
67  
68      setSolventDielectric(gk.getSolventPermittivity());
69      setSoluteDielectric(1.0);
70      setDielectricOffset(gk.getDescreenOffset() * OpenMM_NmPerAngstrom);
71  
72      boolean usePerfectRadii = gk.getUsePerfectRadii();
73      double perfectRadiiScale = 1.0;
74      if (usePerfectRadii) {
75        // No descreening when using perfect radii (OpenMM will just load the base radii).
76        perfectRadiiScale = 0.0;
77      }
78  
79      // Turn on tanh rescaling only when not using perfect radii.
80      int tanhRescale = 0;
81      if (gk.getTanhCorrection() && !usePerfectRadii) {
82        tanhRescale = 1;
83      }
84      double[] betas = gk.getTanhBetas();
85      setTanhRescaling(tanhRescale);
86      setTanhParameters(betas[0], betas[1], betas[2]);
87  
88      double[] baseRadius = gk.getBaseRadii();
89      if (usePerfectRadii) {
90        baseRadius = gk.getPerfectRadii();
91      }
92  
93      double[] overlapScale = gk.getOverlapScale();
94      double[] descreenRadius = gk.getDescreenRadii();
95      double[] neckFactor = gk.getNeckScale();
96  
97      if (!usePerfectRadii && logger.isLoggable(Level.FINE)) {
98        logger.fine("   GK Base Radii  Descreen Radius  Overlap Scale  Overlap");
99      }
100 
101     Atom[] atoms = openMMEnergy.getMolecularAssembly().getAtomArray();
102     int nAtoms = atoms.length;
103     for (int i = 0; i < nAtoms; i++) {
104       MultipoleType multipoleType = atoms[i].getMultipoleType();
105       double base = baseRadius[i] * OpenMM_NmPerAngstrom;
106       double descreen = descreenRadius[i] * OpenMM_NmPerAngstrom * perfectRadiiScale;
107       double overlap = overlapScale[i] * perfectRadiiScale;
108       double neck = neckFactor[i] * perfectRadiiScale;
109       addParticle_1(multipoleType.charge, base, overlap, descreen, neck);
110       if (!usePerfectRadii && logger.isLoggable(Level.FINE)) {
111         logger.fine(format("   %s %8.6f %8.6f %5.3f", atoms[i].toString(), baseRadius[i], descreenRadius[i], overlapScale[i]));
112       }
113     }
114 
115     setProbeRadius(gk.getProbeRadius() * OpenMM_NmPerAngstrom);
116 
117     GeneralizedKirkwood.NonPolarModel nonpolar = gk.getNonPolarModel();
118     switch (nonpolar) {
119       case BORN_CAV_DISP, BORN_SOLV -> {
120         // Configure a Born Radii based surface area term.
121         double surfaceTension = gk.getSurfaceTension() * OpenMM_KJPerKcal * OpenMM_AngstromsPerNm * OpenMM_AngstromsPerNm;
122         setIncludeCavityTerm(OpenMM_True);
123         setSurfaceAreaFactor(-surfaceTension);
124       }
125       // Other models do not use a Born Radii based surface area term.
126       default -> setIncludeCavityTerm(OpenMM_False);
127     }
128 
129     ForceField forceField = openMMEnergy.getMolecularAssembly().getForceField();
130     int forceGroup = forceField.getInteger("GK_FORCE_GROUP", 1);
131     setForceGroup(forceGroup);
132     logger.log(Level.INFO, format("  Generalized Kirkwood force \t\t%d", forceGroup));
133   }
134 
135   /**
136    * Convenience method to construct an AMOEBA Generalized Kirkwood Force.
137    *
138    * @param openMMEnergy The OpenMM Energy instance that contains the GK information.
139    * @return An AMOEBA GK Force, or null if there are no GK interactions.
140    */
141   public static Force constructForce(OpenMMEnergy openMMEnergy) {
142     GeneralizedKirkwood gk = openMMEnergy.getGK();
143     if (gk == null) {
144       return null;
145     }
146     return new AmoebaGeneralizedKirkwoodForce(openMMEnergy);
147   }
148 
149 
150   /**
151    * Update the force.
152    *
153    * @param atoms        The atoms to update.
154    * @param openMMEnergy The OpenMM energy.
155    */
156   public void updateForce(Atom[] atoms, OpenMMEnergy openMMEnergy) {
157     GeneralizedKirkwood gk = openMMEnergy.getGK();
158     if (gk == null || pointer == null) {
159       return;
160     }
161 
162     // Update the GK solute parameters.
163     int nAtoms = openMMEnergy.getMolecularAssembly().getAtomArray().length;
164     for (int i = 0; i < nAtoms; i++) {
165       gk.udpateSoluteParameters(i);
166     }
167 
168     boolean usePerfectRadii = gk.getUsePerfectRadii();
169     double perfectRadiiScale = 1.0;
170     if (usePerfectRadii) {
171       // No descreening when using perfect radii (OpenMM will just load the base radii).
172       perfectRadiiScale = 0.0;
173     }
174 
175     double[] baseRadii = gk.getBaseRadii();
176     if (usePerfectRadii) {
177       baseRadii = gk.getPerfectRadii();
178     }
179     double[] overlapScale = gk.getOverlapScale();
180     double[] descreenRadius = gk.getDescreenRadii();
181     double[] neckFactors = gk.getNeckScale();
182 
183     boolean nea = gk.getNativeEnvironmentApproximation();
184     double lambdaElec = openMMEnergy.getSystem().getLambdaElec();
185 
186     for (Atom atom : atoms) {
187       int index = atom.getXyzIndex() - 1;
188       double chargeUseFactor = 1.0;
189       if (!atom.getUse() || !atom.getElectrostatics()) {
190         chargeUseFactor = 0.0;
191       }
192 
193       double lambdaScale = lambdaElec;
194       if (!atom.applyLambda()) {
195         lambdaScale = 1.0;
196       }
197 
198       double baseSize = baseRadii[index] * OpenMM_NmPerAngstrom;
199       double descreenSize = descreenRadius[index] * OpenMM_NmPerAngstrom * perfectRadiiScale;
200 
201       chargeUseFactor *= lambdaScale;
202       double overlapScaleUseFactor = nea ? 1.0 : chargeUseFactor;
203       overlapScaleUseFactor = overlapScaleUseFactor * perfectRadiiScale;
204       double overlap = overlapScale[index] * overlapScaleUseFactor;
205       double neckFactor = neckFactors[index] * overlapScaleUseFactor;
206 
207       MultipoleType multipoleType = atom.getMultipoleType();
208       setParticleParameters_1(index, multipoleType.charge * chargeUseFactor, baseSize, overlap, descreenSize, neckFactor);
209     }
210 
211     // OpenMM Bug: Surface Area is not Updated by "updateParametersInContext"
212     GeneralizedKirkwood.NonPolarModel nonpolar = gk.getNonPolarModel();
213     switch (nonpolar) {
214       case BORN_CAV_DISP, BORN_SOLV -> {
215         // Configure a Born Radii based surface area term.
216         double surfaceTension = gk.getSurfaceTension() * OpenMM_KJPerKcal * OpenMM_AngstromsPerNm * OpenMM_AngstromsPerNm;
217         setSurfaceAreaFactor(-surfaceTension);
218       }
219     }
220 
221     updateParametersInContext(openMMEnergy.getContext());
222   }
223 }