View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.algorithms.mc;
39  
40  import ffx.algorithms.thermodynamics.OrthogonalSpaceTempering;
41  
42  import java.util.Random;
43  import java.util.logging.Logger;
44  
45  import static org.apache.commons.math3.util.FastMath.abs;
46  import static org.apache.commons.math3.util.FastMath.max;
47  import static org.apache.commons.math3.util.FastMath.min;
48  
49  /**
50   * Define an MC move to update lambda.
51   *
52   * @author Mallory R. Tollefson
53   */
54  public class LambdaMove implements MCMove {
55  
56    private static final Logger logger = Logger.getLogger(LambdaMove.class.getName());
57    /** Apply the Lambda move to an OST instance. */
58    private final OrthogonalSpaceTempering orthogonalSpaceTempering;
59    /** Random number generator. */
60    private final Random random;
61    /** Current value of lambda, which always refreshed from the OST instance. */
62    private double currentLambda;
63    /**
64     * Lambda move size: 1) The standard deviation for continuous moves from a Gaussian distribution.
65     * 2) The step size for discrete moves.
66     */
67    private double moveSize = 0.1;
68    /** If true, do continuous moves. Otherwise, use discrete moves. */
69    private boolean isContinuous = true;
70  
71    /**
72     * Constructor for LambdaMove.
73     *
74     * @param orthogonalSpaceTempering a {@link OrthogonalSpaceTempering} object.
75     */
76    public LambdaMove(OrthogonalSpaceTempering orthogonalSpaceTempering) {
77      this.orthogonalSpaceTempering = orthogonalSpaceTempering;
78      random = new Random();
79    }
80  
81    /**
82     * Constructor for LambdaMove.
83     *
84     * @param randomSeed Random seed to use.
85     * @param orthogonalSpaceTempering OrthogonalSpaceTempering instance.
86     */
87    public LambdaMove(int randomSeed, OrthogonalSpaceTempering orthogonalSpaceTempering) {
88      this.orthogonalSpaceTempering = orthogonalSpaceTempering;
89      random = new Random(randomSeed);
90    }
91  
92    /**
93     * Applies 0-1 mirroring conditions to lam + dL. Skips any moves where dL is greater than 1 or less
94     * than -1, and skips 50% of moves from 0 or 1 (exact).
95     *
96     * @param random Source of randomness.
97     * @param lam Initial lambda.
98     * @param dL Change in lambda.
99     * @return Correctly mirrored lam + dL
100    */
101   public static double mirror(Random random, double lam, double dL) {
102     if (lam == 0.0 || lam == 1.0) {
103       boolean skip = random.nextBoolean();
104       if (skip) {
105         return lam;
106       }
107     }
108     // Eliminate really weird edge cases.
109     if (abs(dL) > 1.0) {
110       logger.warning(String.format(" Skipping large lambda move of %.3f not between -1 and +1", dL));
111       return lam;
112     }
113     // Math.abs to mirror negative values.
114     double newLam = abs(lam + dL);
115     // If greater than 1, mirror via 2.0 - val
116     return newLam <= 1.0 ? newLam : 2.0 - newLam;
117   }
118 
119   /**
120    * Get the Lambda move size, which is a standard deviation for continuous moves or step size for
121    * discrete moves.
122    *
123    * @return The lambda move size.
124    */
125   public double getMoveSize() {
126     return moveSize;
127   }
128 
129   /**
130    * Get the Lambda move size, which is a standard deviation for continuous moves or step size for
131    * discrete moves.
132    *
133    * @param moveSize a double.
134    */
135   public void setMoveSize(double moveSize) {
136     this.moveSize = moveSize;
137   }
138 
139   /**
140    * If true, do continuous moves. Otherwise, use discrete moves.
141    *
142    * @return Returns true if the lambda moves are continuous.
143    */
144   public boolean isContinuous() {
145     return isContinuous;
146   }
147 
148   /**
149    * If true, do continuous moves. Otherwise, use discrete moves.
150    *
151    * @param continuous Sets the lambda move style.
152    */
153   public void setContinuous(boolean continuous) {
154     isContinuous = continuous;
155   }
156 
157   /** {@inheritDoc} */
158   @Override
159   public void move() {
160     currentLambda = orthogonalSpaceTempering.getLambda();
161 
162     // Draw a trial move from the distribution.
163     double dL = isContinuous ? continuousMove() : discreteMove();
164     double newLambda = mirror(currentLambda, dL);
165 
166     // Update the OST instance.
167     orthogonalSpaceTempering.setLambda(newLambda);
168   }
169 
170   /** {@inheritDoc} */
171   @Override
172   public void revertMove() {
173     orthogonalSpaceTempering.setLambda(currentLambda);
174   }
175 
176   /**
177    * Validate lambda is in the range [0 .. 1].
178    *
179    * <p>For discrete moves, set Lambda to the closest valid value [0, dL, 2dL, .. 1].
180    *
181    * @param lambda Input lambda value.
182    * @return Validated lambda value.
183    */
184   public double validateLambda(double lambda) {
185     lambda = max(0.0, min(lambda, 1.0));
186     if (isContinuous) {
187       return lambda;
188     }
189     double remainder = lambda % moveSize;
190     if (remainder < moveSize / 2.0) {
191       return max(0.0, lambda - remainder);
192     } else {
193       return min(lambda + (moveSize - remainder), 1.0);
194     }
195   }
196 
197   /**
198    * Applies 0-1 mirroring conditions to lam + dL. Skips any moves where dL is greater than 1 or less
199    * than -1, and skips 50% of moves from 0 or 1 (exact).
200    *
201    * @param lam Initial lambda.
202    * @param dL Change in lambda.
203    * @return Correctly mirrored lam + dL
204    */
205   private double mirror(double lam, double dL) {
206     // Telescope to public static method because a public static method
207     // may be useful in the future.
208     return mirror(random, lam, dL);
209   }
210 
211   /**
212    * Pulls a delta-lambda from a continuous Gaussian distribution.
213    *
214    * @return A random Gaussian value with width of moveSize.
215    */
216   private double continuousMove() {
217     // Draw a trial move from the distribution.
218     return random.nextGaussian() * moveSize;
219   }
220 
221   /**
222    * Pulls a continuous lambda move of width moveSize.
223    *
224    * @return +/- moveSize (never 0)
225    */
226   private double discreteMove() {
227     // Make a discrete move.
228     double dL = moveSize;
229     if (random.nextBoolean()) {
230       dL = -moveSize;
231     }
232     return dL;
233   }
234 }