Package ffx.xray
Class RefinementEnergy
java.lang.Object
ffx.xray.RefinementEnergy
- All Implemented Interfaces:
AlgorithmListener,CrystalPotential,OptimizationInterface,Potential,LambdaInterface
public class RefinementEnergy
extends Object
implements LambdaInterface, CrystalPotential, AlgorithmListener
Combine the X-ray target and chemical potential energy using the
CrystalPotential interface- Since:
- 1.0
- Author:
- Timothy D. Fenn, Michael J. Schnieders
-
Nested Class Summary
Nested classes/interfaces inherited from interface ffx.numerics.Potential
Potential.STATE, Potential.VARIABLE_TYPE -
Field Summary
Fields -
Constructor Summary
ConstructorsConstructorDescriptionRefinementEnergy(DataContainer data, RefinementMinimize.RefinementMode refinementMode) RefinementEnergy Constructor.RefinementEnergy(DataContainer data, RefinementMinimize.RefinementMode refinementMode, double[] optimizationScaling) RefinementEnergy Constructor. -
Method Summary
Modifier and TypeMethodDescriptionbooleanalgorithmUpdate(MolecularAssembly active) After a successful step or interval of an algorithm, this method of the listener will be called.booleandestroy()Destroys this Potential and frees up any associated resources, particularly worker Threads.doubleenergy(double[] x) This method is called repeatedly to compute the function energy.doubleenergy(double[] x, boolean print) This method is called repeatedly to compute the function energy.doubleenergyAndGradient(double[] x, double[] g) This method is called repeatedly to compute the function energy and gradient.doubleenergyAndGradient(double[] x, double[] g, boolean print) This method is called repeatedly to compute the function energy and gradient.double[]getAcceleration(double[] acceleration) getAcceleration.Atom[]getActiveAtoms.double[]getCoordinates(double[] parameters) Load the current value of the parameters.Get the Crystal instance that specifies the periodic boundary conditions and symmetry.doubleGet the 2nd partial derivative of the energy with respect to lambda.Getter for the fielddataEnergy.doublegetdEdL()Get the partial derivative of the energy with respect to lambda.voidgetdEdXdL(double[] gradient) Get the gradient of dEdL with respect to each parameter.Get the Potential Energy terms that is active.doubleget the current kT scaling weightdoubleGet the current value of the state variable.double[]getMass()Get the mass of each degree of freedom.intGet the number of variables being operated on.double[]getPreviousAcceleration(double[] previousAcceleration) getPreviousAcceleration.booleanGetter for the fieldprintOnFailure.double[]Get the problem scaling.Getter for the fieldthermostat.doubleGet the total energy of the systemReturns a List of Potentials this Potential depends on with a recursive search, excluding the top level of this call.Get the type of all variables.double[]getVelocity(double[] velocity) getVelocity.doubleGet the current data weight (wA).voidsetAcceleration(double[] acceleration) setAcceleration.voidsetCoordinates(double[] parameters) Set the current value of the parameters.voidsetCrystal(Crystal crystal) Set the Crystal instance that specifies the periodic boundary conditions and symmetry.voidSet the Potential Energy terms that should be active.voidsetKTScale(double ktscale) set the current kT scaling weightvoidsetLambda(double lambda) Set the current value of the state variable.voidsetPreviousAcceleration(double[] previousAcceleration) setPreviousAcceleration.voidsetPrintOnFailure(boolean onFail, boolean override) Sets the printOnFailure flag; if override is true, over-rides any existing property.voidsetScaling(double[] scaling) Scale the problem.voidsetThermostat(Thermostat thermostat) Setter for the fieldthermostat.voidsetVelocity(double[] velocity) setVelocity.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface ffx.potential.bonded.LambdaInterface
dEdLZeroAtEndsMethods inherited from interface ffx.numerics.OptimizationInterface
scaleCoordinates, scaleCoordinatesAndGradient, unscaleCoordinatesMethods inherited from interface ffx.numerics.Potential
getConstraints, writeAdditionalRestartInfo
-
Field Details
-
thermostat
A thermostat instance.
-
-
Constructor Details
-
RefinementEnergy
RefinementEnergy Constructor.- Parameters:
data- inputdatafor refinementrefinementMode-RefinementMinimize.RefinementModefor refinement
-
RefinementEnergy
public RefinementEnergy(DataContainer data, RefinementMinimize.RefinementMode refinementMode, double[] optimizationScaling) RefinementEnergy Constructor.- Parameters:
data- inputdatafor refinementrefinementMode-RefinementMinimize.RefinementModefor refinementoptimizationScaling- scaling of refinement parameters
-
-
Method Details
-
algorithmUpdate
After a successful step or interval of an algorithm, this method of the listener will be called.- Specified by:
algorithmUpdatein interfaceAlgorithmListener- Parameters:
active- The system the algorithm is operating on.- Returns:
- A return of
trueindicates the algorithm continues.
-
destroy
public boolean destroy()Destroys this Potential and frees up any associated resources, particularly worker Threads. Default implementation is to return true (assume destruction successful).- Specified by:
destroyin interfaceOptimizationInterface- Returns:
- If resource reclamation successful, or resources already reclaimed.
-
energy
public double energy(double[] x) This method is called repeatedly to compute the function energy.- Specified by:
energyin interfaceOptimizationInterface- Parameters:
x- Input parameters.- Returns:
- Function value at
x.
-
energy
public double energy(double[] x, boolean print) This method is called repeatedly to compute the function energy. The verbose flag may not be used by all implementations.- Specified by:
energyin interfaceOptimizationInterface- Parameters:
x- Input parameters.print- Display extra information.- Returns:
- Function value at
x
-
energyAndGradient
public double energyAndGradient(double[] x, double[] g) This method is called repeatedly to compute the function energy and gradient.Implementation of the
CrystalPotentialinterface for the RefinementEnergy.- Specified by:
energyAndGradientin interfaceOptimizationInterface- Parameters:
x- Input parameters.g- Output gradients with respect to each parameter.- Returns:
- Function value at
x.
-
energyAndGradient
public double energyAndGradient(double[] x, double[] g, boolean print) This method is called repeatedly to compute the function energy and gradient. The verbose flag may not be used by all implementations.Implementation of the
CrystalPotentialinterface for the RefinementEnergy.- Specified by:
energyAndGradientin interfaceOptimizationInterface- Parameters:
x- Input parameters.g- Output gradients with respect to each parameter.print- Display extra information.- Returns:
- Function value at
x.
-
getAcceleration
public double[] getAcceleration(double[] acceleration) getAcceleration.- Specified by:
getAccelerationin interfacePotential- Parameters:
acceleration- an array of double values.- Returns:
- an array of double values.
-
getActiveAtoms
getActiveAtoms.- Returns:
- an array of
Atomobjects.
-
getCoordinates
public double[] getCoordinates(double[] parameters) Load the current value of the parameters. If the supplied array is null or not large enough, a new one should be created. The filled array is returned.- Specified by:
getCoordinatesin interfaceOptimizationInterface- Parameters:
parameters- Supplied array.- Returns:
- The array filled with parameter values.
-
setCoordinates
public void setCoordinates(double[] parameters) Set the current value of the parameters. If the supplied array is null or not large enough, no action is taken.- Specified by:
setCoordinatesin interfaceOptimizationInterface- Parameters:
parameters- The array with parameter values.
-
getCrystal
Get the Crystal instance that specifies the periodic boundary conditions and symmetry.- Specified by:
getCrystalin interfaceCrystalPotential- Returns:
- a Crystal instance.
-
setCrystal
Set the Crystal instance that specifies the periodic boundary conditions and symmetry.- Specified by:
setCrystalin interfaceCrystalPotential- Parameters:
crystal- a Crystal instance.
-
getDataEnergy
Getter for the fielddataEnergy.- Returns:
- a
CrystalPotentialobject.
-
getEnergyTermState
Get the Potential Energy terms that is active.- Specified by:
getEnergyTermStatein interfacePotential- Returns:
- the STATE
-
setEnergyTermState
Set the Potential Energy terms that should be active.- Specified by:
setEnergyTermStatein interfacePotential- Parameters:
state- include FAST varying energy terms, SLOW varying energy terms or BOTH.
-
getKTScale
public double getKTScale()get the current kT scaling weight- Returns:
- kT scale
-
setKTScale
public void setKTScale(double ktscale) set the current kT scaling weight- Parameters:
ktscale- requested kT scale
-
getLambda
public double getLambda()Get the current value of the state variable.- Specified by:
getLambdain interfaceLambdaInterface- Returns:
- state
-
setLambda
public void setLambda(double lambda) Set the current value of the state variable. May be ignored if lambda is not being applied.- Specified by:
setLambdain interfaceLambdaInterface- Parameters:
lambda- a double.
-
getMass
public double[] getMass()Get the mass of each degree of freedom. This is required for molecular dynamics. -
getNumberOfVariables
public int getNumberOfVariables()Get the number of variables being operated on.- Specified by:
getNumberOfVariablesin interfaceOptimizationInterface- Returns:
- Number of variables.
-
getPreviousAcceleration
public double[] getPreviousAcceleration(double[] previousAcceleration) getPreviousAcceleration.- Specified by:
getPreviousAccelerationin interfacePotential- Parameters:
previousAcceleration- an array of double values.- Returns:
- an array of double values.
-
getPrintOnFailure
public boolean getPrintOnFailure()Getter for the fieldprintOnFailure.- Returns:
- a boolean.
-
getScaling
public double[] getScaling()Get the problem scaling.- Specified by:
getScalingin interfaceOptimizationInterface- Returns:
- The scaling value used for each variable.
-
setScaling
public void setScaling(double[] scaling) Scale the problem. A good choice for optimization is the square root of the median eigenvalue of a typical Hessian.- Specified by:
setScalingin interfaceOptimizationInterface- Parameters:
scaling- The scaling value to use for each variable.
-
getThermostat
Getter for the fieldthermostat.- Returns:
- a
Thermostatobject.
-
setThermostat
Setter for the fieldthermostat.- Parameters:
thermostat- aThermostatobject.
-
getTotalEnergy
public double getTotalEnergy()Get the total energy of the system- Specified by:
getTotalEnergyin interfaceOptimizationInterface- Returns:
- the total energy
-
getUnderlyingPotentials
Description copied from interface:OptimizationInterfaceReturns a List of Potentials this Potential depends on with a recursive search, excluding the top level of this call. May not be implemented for all Potentials.- Specified by:
getUnderlyingPotentialsin interfaceOptimizationInterface- Returns:
- By default, an empty list.
-
getVariableTypes
Get the type of all variables.Return a reference to each variables type.
- Specified by:
getVariableTypesin interfacePotential- Returns:
- The VARIABLE_TYPE of each variable.
-
getVelocity
public double[] getVelocity(double[] velocity) getVelocity.- Specified by:
getVelocityin interfacePotential- Parameters:
velocity- an array of double values.- Returns:
- an array of double values.
-
getXWeight
public double getXWeight()Get the current data weight (wA).- Returns:
- weight wA
-
getd2EdL2
public double getd2EdL2()Get the 2nd partial derivative of the energy with respect to lambda.- Specified by:
getd2EdL2in interfaceLambdaInterface- Returns:
- d2EdL2
-
getdEdL
public double getdEdL()Get the partial derivative of the energy with respect to lambda.- Specified by:
getdEdLin interfaceLambdaInterface- Returns:
- dEdL
-
getdEdXdL
public void getdEdXdL(double[] gradient) Get the gradient of dEdL with respect to each parameter.- Specified by:
getdEdXdLin interfaceLambdaInterface- Parameters:
gradient- - A double array of length the number of parameters in the model (commonly 3 * number of atoms).
-
setAcceleration
public void setAcceleration(double[] acceleration) setAcceleration.- Specified by:
setAccelerationin interfacePotential- Parameters:
acceleration- an array of double values.
-
setPreviousAcceleration
public void setPreviousAcceleration(double[] previousAcceleration) setPreviousAcceleration.- Specified by:
setPreviousAccelerationin interfacePotential- Parameters:
previousAcceleration- an array of double values.
-
setPrintOnFailure
public void setPrintOnFailure(boolean onFail, boolean override) Sets the printOnFailure flag; if override is true, over-rides any existing property. Essentially sets the default value of printOnFailure for an algorithm. For example, rotamer optimization will generally run into force field issues in the normal course of execution as it tries unphysical self and 2-Body configurations, so the algorithm should not print out a large number of error PDBs.- Parameters:
onFail- To setoverride- Override properties
-
setVelocity
public void setVelocity(double[] velocity) setVelocity.- Specified by:
setVelocityin interfacePotential- Parameters:
velocity- an array of double values.
-