View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.potential.openmm;
39  
40  import ffx.openmm.CustomCompoundBondForce;
41  import ffx.openmm.DoubleArray;
42  import ffx.openmm.Force;
43  import ffx.openmm.IntArray;
44  import ffx.potential.ForceFieldEnergy;
45  import ffx.potential.bonded.Angle;
46  import ffx.potential.bonded.Atom;
47  import ffx.potential.parameters.AngleType;
48  import ffx.potential.parameters.ForceField;
49  import ffx.potential.terms.AnglePotentialEnergy;
50  
51  import java.util.logging.Logger;
52  
53  import static edu.uiowa.jopenmm.OpenMMAmoebaLibrary.OpenMM_KJPerKcal;
54  import static java.lang.String.format;
55  
56  /**
57   * OpenMM In-Plane Angle Force.
58   */
59  public class InPlaneAngleForce extends CustomCompoundBondForce {
60  
61    private static final Logger logger = Logger.getLogger(InPlaneAngleForce.class.getName());
62  
63    private int nAngles = 0;
64    private final boolean manyBodyTitration;
65  
66    /**
67     * Create an OpenMM Angle Force.
68     *
69     * @param anglePotentialEnergy The AnglePotentialEnergy that contains the angles.
70     * @param openMMEnergy         The OpenMM Energy instance that contains the angles.
71     */
72    public InPlaneAngleForce(AnglePotentialEnergy anglePotentialEnergy, OpenMMEnergy openMMEnergy) {
73      super(4, anglePotentialEnergy.getInPlaneAngleEnergyString());
74      Angle[] angles = anglePotentialEnergy.getAngleArray();
75      addPerBondParameter("theta0");
76      addPerBondParameter("k");
77      setName("InPlaneAngle");
78  
79      ForceField forceField = openMMEnergy.getMolecularAssembly().getForceField();
80      manyBodyTitration = forceField.getBoolean("MANYBODY_TITRATION", false);
81  
82      IntArray particles = new IntArray(0);
83      DoubleArray parameters = new DoubleArray(0);
84      for (Angle angle : angles) {
85        AngleType.AngleMode angleMode = angle.angleType.angleMode;
86  
87        if (!manyBodyTitration && angleMode == AngleType.AngleMode.NORMAL) {
88          // Skip Normal angles unless this is ManyBody Titration.
89        } else {
90          double theta0 = angle.angleType.angle[angle.nh];
91          double k = OpenMM_KJPerKcal * angle.angleType.angleUnit * angle.angleType.forceConstant;
92          int i1 = angle.getAtom(0).getArrayIndex();
93          int i2 = angle.getAtom(1).getArrayIndex();
94          int i3 = angle.getAtom(2).getArrayIndex();
95          int i4 = 0;
96          if (angleMode == AngleType.AngleMode.NORMAL) {
97            // This is a place-holder Angle, in case the Normal Angle is switched to an
98            // In-Plane Angle during in the udpateInPlaneAngleForce.
99            k = 0.0;
100           Atom fourthAtom = angle.getFourthAtomOfTrigonalCenter();
101           if (fourthAtom != null) {
102             i4 = fourthAtom.getArrayIndex();
103           } else {
104             while (i1 == i4 || i2 == i4 || i3 == i4) {
105               i4++;
106             }
107           }
108         } else {
109           i4 = angle.getAtom4().getArrayIndex();
110         }
111         particles.append(i1);
112         particles.append(i2);
113         particles.append(i3);
114         particles.append(i4);
115         parameters.append(theta0);
116         parameters.append(k);
117         addBond(particles, parameters);
118         nAngles++;
119         particles.resize(0);
120         parameters.resize(0);
121       }
122     }
123     particles.destroy();
124     parameters.destroy();
125 
126     if (nAngles > 0) {
127       int forceGroup = anglePotentialEnergy.getForceGroup();
128       setForceGroup(forceGroup);
129       logger.info(format("  In-Plane Angles:                   %10d", nAngles));
130       logger.fine(format("   Force Group:                      %10d", forceGroup));
131     }
132   }
133 
134   /**
135    * Create a Dual Topology OpenMM Angle Force.
136    *
137    * @param anglePotentialEnergy     The AnglePotentialEnergy that contains the angles.
138    * @param topology                 The topology index for the OpenMM System.
139    * @param openMMDualTopologyEnergy The OpenMMDualTopologyEnergy instance.
140    */
141   public InPlaneAngleForce(AnglePotentialEnergy anglePotentialEnergy, int topology, OpenMMDualTopologyEnergy openMMDualTopologyEnergy) {
142     super(4, anglePotentialEnergy.getInPlaneAngleEnergyString());
143 
144     ForceFieldEnergy forceFieldEnergy = openMMDualTopologyEnergy.getForceFieldEnergy(topology);
145     ForceField forceField = forceFieldEnergy.getMolecularAssembly().getForceField();
146     manyBodyTitration = forceField.getBoolean("MANYBODY_TITRATION", false);
147     if (manyBodyTitration) {
148       logger.severe("Dual Topology does not support many body titration.");
149     }
150 
151     Angle[] angles = anglePotentialEnergy.getAngleArray();
152     addPerBondParameter("theta0");
153     addPerBondParameter("k");
154     setName("InPlaneAngle");
155 
156     double scale = openMMDualTopologyEnergy.getTopologyScale(topology);
157 
158     IntArray particles = new IntArray(0);
159     DoubleArray parameters = new DoubleArray(0);
160     for (Angle angle : angles) {
161       AngleType.AngleMode angleMode = angle.angleType.angleMode;
162 
163       if (angleMode == AngleType.AngleMode.NORMAL) {
164         // Skip Normal angles.
165       } else {
166         double theta0 = angle.angleType.angle[angle.nh];
167         double k = OpenMM_KJPerKcal * angle.angleType.angleUnit * angle.angleType.forceConstant;
168         // Don't apply lambda scale to alchemical in-plane angle
169         if (!angle.applyLambda()) {
170           k *= scale;
171         }
172         int i1 = angle.getAtom(0).getArrayIndex();
173         int i2 = angle.getAtom(1).getArrayIndex();
174         int i3 = angle.getAtom(2).getArrayIndex();
175         int i4 = angle.getAtom4().getArrayIndex();
176         i1 = openMMDualTopologyEnergy.mapToDualTopologyIndex(topology, i1);
177         i2 = openMMDualTopologyEnergy.mapToDualTopologyIndex(topology, i2);
178         i3 = openMMDualTopologyEnergy.mapToDualTopologyIndex(topology, i3);
179         i4 = openMMDualTopologyEnergy.mapToDualTopologyIndex(topology, i4);
180         particles.append(i1);
181         particles.append(i2);
182         particles.append(i3);
183         particles.append(i4);
184         parameters.append(theta0);
185         parameters.append(k);
186         addBond(particles, parameters);
187         nAngles++;
188         particles.resize(0);
189         parameters.resize(0);
190       }
191     }
192     particles.destroy();
193     parameters.destroy();
194 
195     if (nAngles > 0) {
196       int forceGroup = anglePotentialEnergy.getForceGroup();
197       setForceGroup(forceGroup);
198       logger.info(format("  In-Plane Angles:                   %10d", nAngles));
199       logger.fine(format("   Force Group:                      %10d", forceGroup));
200     }
201   }
202 
203   /**
204    * Convenience method to construct an OpenMM In-Plane Angle Force.
205    *
206    * @param openMMEnergy The OpenMM Energy instance that contains the angles.
207    * @return An OpenMM Angle Force, or null if there are no angles.
208    */
209   public static Force constructForce(OpenMMEnergy openMMEnergy) {
210     AnglePotentialEnergy anglePotentialEnergy = openMMEnergy.getAnglePotentialEnergy();
211     if (anglePotentialEnergy == null) {
212       return null;
213     }
214     InPlaneAngleForce angleForce = new InPlaneAngleForce(anglePotentialEnergy, openMMEnergy);
215     if (angleForce.nAngles > 0) {
216       return angleForce;
217     }
218     return null;
219   }
220 
221   /**
222    * Convenience method to construct a Dual Topology OpenMM In-Plane Angle Force.
223    *
224    * @param topology                 The topology index for the OpenMM System.
225    * @param openMMDualTopologyEnergy The OpenMMDualTopologyEnergy instance.
226    * @return An OpenMM Angle Force, or null if there are no angles.
227    */
228   public static Force constructForce(int topology, OpenMMDualTopologyEnergy openMMDualTopologyEnergy) {
229     ForceFieldEnergy forceFieldEnergy = openMMDualTopologyEnergy.getForceFieldEnergy(topology);
230     AnglePotentialEnergy anglePotentialEnergy = forceFieldEnergy.getAnglePotentialEnergy();
231     if (anglePotentialEnergy == null) {
232       return null;
233     }
234     InPlaneAngleForce angleForce = new InPlaneAngleForce(anglePotentialEnergy, topology, openMMDualTopologyEnergy);
235     if (angleForce.nAngles > 0) {
236       return angleForce;
237     }
238     return null;
239   }
240 
241   /**
242    * Update an existing angle force for the OpenMM System.
243    *
244    * @param openMMEnergy The OpenMM Energy instance that contains the angles.
245    */
246   public void updateForce(OpenMMEnergy openMMEnergy) {
247     AnglePotentialEnergy anglePotentialEnergy = openMMEnergy.getAnglePotentialEnergy();
248     if (anglePotentialEnergy == null) {
249       return;
250     }
251     Angle[] angles = anglePotentialEnergy.getAngleArray();
252     IntArray particles = new IntArray(0);
253     DoubleArray parameters = new DoubleArray(0);
254     int index = 0;
255     for (Angle angle : angles) {
256       AngleType.AngleMode angleMode = angle.angleType.angleMode;
257       if (!manyBodyTitration && angleMode == AngleType.AngleMode.NORMAL) {
258         // Skip Normal angles unless this is ManyBody Titration.
259       } else {
260         double theta0 = angle.angleType.angle[angle.nh];
261         double k = OpenMM_KJPerKcal * angle.angleType.angleUnit * angle.angleType.forceConstant;
262         int i1 = angle.getAtom(0).getArrayIndex();
263         int i2 = angle.getAtom(1).getArrayIndex();
264         int i3 = angle.getAtom(2).getArrayIndex();
265         // There is no 4th atom for normal angles, so set the index to first atom.
266         int i4 = 0;
267         if (angleMode == AngleType.AngleMode.NORMAL) {
268           // Zero the force constant for Normal Angles.
269           k = 0.0;
270           Atom fourthAtom = angle.getFourthAtomOfTrigonalCenter();
271           if (fourthAtom != null) {
272             i4 = fourthAtom.getArrayIndex();
273           } else {
274             while (i1 == i4 || i2 == i4 || i3 == i4) {
275               i4++;
276             }
277           }
278         } else {
279           i4 = angle.getAtom4().getArrayIndex();
280         }
281         particles.append(i1);
282         particles.append(i2);
283         particles.append(i3);
284         particles.append(i4);
285         parameters.append(theta0);
286         parameters.append(k);
287         setBondParameters(index++, particles, parameters);
288         particles.resize(0);
289         parameters.resize(0);
290       }
291     }
292     particles.destroy();
293     parameters.destroy();
294     updateParametersInContext(openMMEnergy.getContext());
295   }
296 
297   /**
298    * Update an existing angle force for the Dual Topology OpenMM System.
299    *
300    * @param topology                 The topology index for the OpenMM System.
301    * @param openMMDualTopologyEnergy The OpenMMDualTopologyEnergy instance.
302    */
303   public void updateForce(int topology, OpenMMDualTopologyEnergy openMMDualTopologyEnergy) {
304     ForceFieldEnergy forceFieldEnergy = openMMDualTopologyEnergy.getForceFieldEnergy(topology);
305     AnglePotentialEnergy anglePotentialEnergy = forceFieldEnergy.getAnglePotentialEnergy();
306     if (anglePotentialEnergy == null) {
307       return;
308     }
309     Angle[] angles = anglePotentialEnergy.getAngleArray();
310     double scale = openMMDualTopologyEnergy.getTopologyScale(topology);
311     IntArray particles = new IntArray(0);
312     DoubleArray parameters = new DoubleArray(0);
313     int index = 0;
314     for (Angle angle : angles) {
315       AngleType.AngleMode angleMode = angle.angleType.angleMode;
316       if (angleMode == AngleType.AngleMode.NORMAL) {
317         // Skip Normal angles.
318       } else {
319         double theta0 = angle.angleType.angle[angle.nh];
320         double k = OpenMM_KJPerKcal * angle.angleType.angleUnit * angle.angleType.forceConstant;
321         // Don't apply lambda scale to alchemical in-plane angle
322         if (!angle.applyLambda()) {
323           k *= scale;
324         }
325         int i1 = angle.getAtom(0).getArrayIndex();
326         int i2 = angle.getAtom(1).getArrayIndex();
327         int i3 = angle.getAtom(2).getArrayIndex();
328         int i4 = angle.getAtom4().getArrayIndex();
329         i1 = openMMDualTopologyEnergy.mapToDualTopologyIndex(topology, i1);
330         i2 = openMMDualTopologyEnergy.mapToDualTopologyIndex(topology, i2);
331         i3 = openMMDualTopologyEnergy.mapToDualTopologyIndex(topology, i3);
332         i4 = openMMDualTopologyEnergy.mapToDualTopologyIndex(topology, i4);
333         particles.append(i1);
334         particles.append(i2);
335         particles.append(i3);
336         particles.append(i4);
337         parameters.append(theta0);
338         parameters.append(k);
339         setBondParameters(index++, particles, parameters);
340         particles.resize(0);
341         parameters.resize(0);
342       }
343     }
344     particles.destroy();
345     parameters.destroy();
346     updateParametersInContext(openMMDualTopologyEnergy.getContext());
347   }
348 }