1 // ****************************************************************************** 2 // 3 // Title: Force Field X. 4 // Description: Force Field X - Software for Molecular Biophysics. 5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025. 6 // 7 // This file is part of Force Field X. 8 // 9 // Force Field X is free software; you can redistribute it and/or modify it 10 // under the terms of the GNU General Public License version 3 as published by 11 // the Free Software Foundation. 12 // 13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT 14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 16 // details. 17 // 18 // You should have received a copy of the GNU General Public License along with 19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple 20 // Place, Suite 330, Boston, MA 02111-1307 USA 21 // 22 // Linking this library statically or dynamically with other modules is making a 23 // combined work based on this library. Thus, the terms and conditions of the 24 // GNU General Public License cover the whole combination. 25 // 26 // As a special exception, the copyright holders of this library give you 27 // permission to link this library with independent modules to produce an 28 // executable, regardless of the license terms of these independent modules, and 29 // to copy and distribute the resulting executable under terms of your choice, 30 // provided that you also meet, for each linked independent module, the terms 31 // and conditions of the license of that module. An independent module is a 32 // module which is not derived from or based on this library. If you modify this 33 // library, you may extend this exception to your version of the library, but 34 // you are not obligated to do so. If you do not wish to do so, delete this 35 // exception statement from your version. 36 // 37 // ****************************************************************************** 38 package ffx.openmm; 39 40 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_VariableVerletIntegrator_create; 41 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_VariableVerletIntegrator_destroy; 42 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_VariableVerletIntegrator_getErrorTolerance; 43 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_VariableVerletIntegrator_getMaximumStepSize; 44 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_VariableVerletIntegrator_setErrorTolerance; 45 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_VariableVerletIntegrator_setMaximumStepSize; 46 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_VariableVerletIntegrator_step; 47 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_VariableVerletIntegrator_stepTo; 48 49 /** 50 * This class implements a Verlet integrator with variable time stepping. 51 * The integrator automatically adjusts the step size to maintain a specified 52 * error tolerance, making it suitable for systems with widely varying time scales. 53 * <p> 54 * Unlike the standard Verlet integrator which uses a fixed step size, this 55 * variable step size algorithm monitors the local truncation error and adjusts 56 * the step size accordingly. This can lead to more efficient integration for 57 * systems where different parts evolve on different time scales. 58 */ 59 public class VariableVerletIntegrator extends Integrator { 60 61 /** 62 * Create a VariableVerletIntegrator. 63 * 64 * @param errorTol The error tolerance for adaptive step sizing. 65 */ 66 public VariableVerletIntegrator(double errorTol) { 67 super(OpenMM_VariableVerletIntegrator_create(errorTol)); 68 } 69 70 /** 71 * Destroy the integrator. 72 */ 73 @Override 74 public void destroy() { 75 if (pointer != null) { 76 OpenMM_VariableVerletIntegrator_destroy(pointer); 77 pointer = null; 78 } 79 } 80 81 /** 82 * Get the error tolerance for adaptive step sizing. 83 * 84 * @return The error tolerance. 85 */ 86 public double getErrorTolerance() { 87 return OpenMM_VariableVerletIntegrator_getErrorTolerance(pointer); 88 } 89 90 /** 91 * Get the maximum step size the integrator is allowed to use (in ps). 92 * 93 * @return The maximum step size. 94 */ 95 public double getMaximumStepSize() { 96 return OpenMM_VariableVerletIntegrator_getMaximumStepSize(pointer); 97 } 98 99 /** 100 * Set the error tolerance for adaptive step sizing. 101 * 102 * @param tol The error tolerance. 103 */ 104 public void setErrorTolerance(double tol) { 105 OpenMM_VariableVerletIntegrator_setErrorTolerance(pointer, tol); 106 } 107 108 /** 109 * Set the maximum step size the integrator is allowed to use (in ps). 110 * 111 * @param size The maximum step size. 112 */ 113 public void setMaximumStepSize(double size) { 114 OpenMM_VariableVerletIntegrator_setMaximumStepSize(pointer, size); 115 } 116 117 /** 118 * Advance a simulation through time by taking a series of time steps. 119 * 120 * @param steps The number of time steps to take. 121 */ 122 public void step(int steps) { 123 OpenMM_VariableVerletIntegrator_step(pointer, steps); 124 } 125 126 /** 127 * Advance the simulation by integrating until a specified time is reached. 128 * 129 * @param time The time to which the simulation should be advanced (in ps). 130 */ 131 public void stepTo(double time) { 132 OpenMM_VariableVerletIntegrator_stepTo(pointer, time); 133 } 134 }