View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.openmm;
39  
40  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_Boolean.OpenMM_True;
41  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_create;
42  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_destroy;
43  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_getDefaultPressure;
44  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_getDefaultSurfaceTension;
45  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_getDefaultTemperature;
46  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_getFrequency;
47  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_getRandomNumberSeed;
48  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_getXYMode;
49  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_getZMode;
50  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_setDefaultPressure;
51  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_setDefaultSurfaceTension;
52  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_setDefaultTemperature;
53  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_setFrequency;
54  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_setRandomNumberSeed;
55  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_setXYMode;
56  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_setZMode;
57  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloMembraneBarostat_usesPeriodicBoundaryConditions;
58  
59  /**
60   * This class uses a Monte Carlo algorithm to adjust the size of the periodic box,
61   * simulating the effect of constant pressure and surface tension on a membrane system.
62   * It assumes the simulation is running at constant temperature, and the box size is
63   * adjusted to maintain constant pressure in the XY plane and constant surface tension
64   * in the Z direction.
65   * <p>
66   * This class is most useful for simulating membrane systems at constant pressure and
67   * surface tension, where the membrane is oriented in the XY plane and the normal
68   * direction is along the Z axis.
69   */
70  public class MonteCarloMembraneBarostat extends Force {
71  
72    /**
73     * Create a MonteCarloMembraneBarostat.
74     *
75     * @param defaultPressure       The default pressure acting on the system (in bar).
76     * @param defaultSurfaceTension The default surface tension acting on the membrane (in bar*nm).
77     * @param defaultTemperature    The default temperature at which the system is being maintained (in Kelvin).
78     * @param xymode                The mode for scaling the XY dimensions (0 = isotropic, 1 = anisotropic).
79     * @param zmode                 The mode for scaling the Z dimension (0 = constant volume, 1 = constant pressure).
80     * @param frequency             The frequency at which Monte Carlo pressure changes should be attempted (in time steps).
81     */
82    public MonteCarloMembraneBarostat(double defaultPressure, double defaultSurfaceTension,
83                                      double defaultTemperature, int xymode, int zmode, int frequency) {
84      super(OpenMM_MonteCarloMembraneBarostat_create(defaultPressure, defaultSurfaceTension, defaultTemperature, xymode, zmode, frequency));
85    }
86  
87    /**
88     * Destroy the force.
89     */
90    public void destroy() {
91      if (pointer != null) {
92        OpenMM_MonteCarloMembraneBarostat_destroy(pointer);
93        pointer = null;
94      }
95    }
96  
97    /**
98     * Get the default pressure (in bar).
99     *
100    * @return The default pressure acting on the system.
101    */
102   public double getDefaultPressure() {
103     return OpenMM_MonteCarloMembraneBarostat_getDefaultPressure(pointer);
104   }
105 
106   /**
107    * Get the default surface tension (in bar*nm).
108    *
109    * @return The default surface tension acting on the membrane.
110    */
111   public double getDefaultSurfaceTension() {
112     return OpenMM_MonteCarloMembraneBarostat_getDefaultSurfaceTension(pointer);
113   }
114 
115   /**
116    * Get the default temperature at which the system is being maintained (in Kelvin).
117    *
118    * @return The default temperature.
119    */
120   public double getDefaultTemperature() {
121     return OpenMM_MonteCarloMembraneBarostat_getDefaultTemperature(pointer);
122   }
123 
124   /**
125    * Get the frequency (in time steps) at which Monte Carlo pressure changes should be attempted.
126    *
127    * @return The frequency of pressure change attempts.
128    */
129   public int getFrequency() {
130     return OpenMM_MonteCarloMembraneBarostat_getFrequency(pointer);
131   }
132 
133   /**
134    * Get the random number seed. See setRandomNumberSeed() for details.
135    *
136    * @return The random number seed.
137    */
138   public int getRandomNumberSeed() {
139     return OpenMM_MonteCarloMembraneBarostat_getRandomNumberSeed(pointer);
140   }
141 
142   /**
143    * Get the mode for scaling the XY dimensions.
144    *
145    * @return The XY scaling mode (0 = isotropic, 1 = anisotropic).
146    */
147   public int getXYMode() {
148     return OpenMM_MonteCarloMembraneBarostat_getXYMode(pointer);
149   }
150 
151   /**
152    * Get the mode for scaling the Z dimension.
153    *
154    * @return The Z scaling mode (0 = constant volume, 1 = constant pressure).
155    */
156   public int getZMode() {
157     return OpenMM_MonteCarloMembraneBarostat_getZMode(pointer);
158   }
159 
160   /**
161    * Set the default pressure acting on the system (in bar).
162    *
163    * @param pressure The default pressure acting on the system.
164    */
165   public void setDefaultPressure(double pressure) {
166     OpenMM_MonteCarloMembraneBarostat_setDefaultPressure(pointer, pressure);
167   }
168 
169   /**
170    * Set the default surface tension acting on the membrane (in bar*nm).
171    *
172    * @param surfaceTension The default surface tension acting on the membrane.
173    */
174   public void setDefaultSurfaceTension(double surfaceTension) {
175     OpenMM_MonteCarloMembraneBarostat_setDefaultSurfaceTension(pointer, surfaceTension);
176   }
177 
178   /**
179    * Set the default temperature at which the system is being maintained (in Kelvin).
180    *
181    * @param temperature The default temperature.
182    */
183   public void setDefaultTemperature(double temperature) {
184     OpenMM_MonteCarloMembraneBarostat_setDefaultTemperature(pointer, temperature);
185   }
186 
187   /**
188    * Set the frequency (in time steps) at which Monte Carlo pressure changes should be attempted.
189    *
190    * @param frequency The frequency of pressure change attempts.
191    */
192   public void setFrequency(int frequency) {
193     OpenMM_MonteCarloMembraneBarostat_setFrequency(pointer, frequency);
194   }
195 
196   /**
197    * Set the random number seed. The precise meaning of this parameter is undefined, and is left up
198    * to each Platform to interpret in an appropriate way. It is guaranteed that if two simulations
199    * are run with different random number seeds, the sequence of random numbers will be different.
200    * On the other hand, no guarantees are made about the behavior of simulations that use the same seed.
201    * In particular, Platforms are permitted to use non-deterministic algorithms which produce different
202    * results on successive runs, even if those runs were initialized identically.
203    * <p>
204    * If seed is set to 0 (which is the default value assigned), a unique seed is chosen when a Context
205    * is created from this Force. This is done to ensure that each Context receives unique random seeds
206    * without you needing to set them explicitly.
207    *
208    * @param seed The random number seed.
209    */
210   public void setRandomNumberSeed(int seed) {
211     OpenMM_MonteCarloMembraneBarostat_setRandomNumberSeed(pointer, seed);
212   }
213 
214   /**
215    * Set the mode for scaling the XY dimensions.
216    *
217    * @param xymode The XY scaling mode (0 = isotropic, 1 = anisotropic).
218    */
219   public void setXYMode(int xymode) {
220     OpenMM_MonteCarloMembraneBarostat_setXYMode(pointer, xymode);
221   }
222 
223   /**
224    * Set the mode for scaling the Z dimension.
225    *
226    * @param zmode The Z scaling mode (0 = constant volume, 1 = constant pressure).
227    */
228   public void setZMode(int zmode) {
229     OpenMM_MonteCarloMembraneBarostat_setZMode(pointer, zmode);
230   }
231 
232   /**
233    * Returns whether this force makes use of periodic boundary conditions.
234    *
235    * @return True if the force uses periodic boundary conditions.
236    */
237   @Override
238   public boolean usesPeriodicBoundaryConditions() {
239     int pbc = OpenMM_MonteCarloMembraneBarostat_usesPeriodicBoundaryConditions(pointer);
240     return pbc == OpenMM_True;
241   }
242 }