1 // ******************************************************************************
2 //
3 // Title: Force Field X.
4 // Description: Force Field X - Software for Molecular Biophysics.
5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025.
6 //
7 // This file is part of Force Field X.
8 //
9 // Force Field X is free software; you can redistribute it and/or modify it
10 // under the terms of the GNU General Public License version 3 as published by
11 // the Free Software Foundation.
12 //
13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 // details.
17 //
18 // You should have received a copy of the GNU General Public License along with
19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20 // Place, Suite 330, Boston, MA 02111-1307 USA
21 //
22 // Linking this library statically or dynamically with other modules is making a
23 // combined work based on this library. Thus, the terms and conditions of the
24 // GNU General Public License cover the whole combination.
25 //
26 // As a special exception, the copyright holders of this library give you
27 // permission to link this library with independent modules to produce an
28 // executable, regardless of the license terms of these independent modules, and
29 // to copy and distribute the resulting executable under terms of your choice,
30 // provided that you also meet, for each linked independent module, the terms
31 // and conditions of the license of that module. An independent module is a
32 // module which is not derived from or based on this library. If you modify this
33 // library, you may extend this exception to your version of the library, but
34 // you are not obligated to do so. If you do not wish to do so, delete this
35 // exception statement from your version.
36 //
37 // ******************************************************************************
38 package ffx.openmm;
39
40 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_computeCurrentPressure;
41 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_create;
42 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_destroy;
43 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_getDefaultPressure;
44 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_getDefaultTemperature;
45 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_getFrequency;
46 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_getRandomNumberSeed;
47 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_setDefaultPressure;
48 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_setDefaultTemperature;
49 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_setFrequency;
50 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_setRandomNumberSeed;
51 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_usesPeriodicBoundaryConditions;
52
53 /**
54 * This class uses a Monte Carlo algorithm to adjust the size of the periodic box, simulating the
55 * effect of constant pressure.
56 * <p>
57 * This class assumes the simulation is also being run at constant temperature, and requires you
58 * to specify the system temperature (since it affects the acceptance probability for Monte Carlo
59 * moves). It does not actually perform temperature regulation, however. You must use another
60 * mechanism along with it to maintain the temperature, such as LangevinIntegrator or AndersenThermostat.
61 */
62 public class MonteCarloBarostat extends Force {
63
64 /**
65 * Create a MonteCarloBarostat.
66 *
67 * @param pressure the default pressure acting on the system (in bar)
68 * @param temperature the default temperature at which the system is being maintained (in Kelvin)
69 * @param frequency the frequency at which Monte Carlo pressure changes should be attempted (in time steps)
70 */
71 public MonteCarloBarostat(double pressure, double temperature, int frequency) {
72 super(OpenMM_MonteCarloBarostat_create(pressure, temperature, frequency));
73 }
74
75 /**
76 * Compute the instantaneous pressure of a system to which this barostat is applied.
77 * <p>
78 * The pressure is computed from the molecular virial, using a finite difference to
79 * calculate the derivative of potential energy with respect to volume. For most systems
80 * in equilibrium, the time average of the instantaneous pressure should equal the
81 * pressure applied by the barostat. Fluctuations around the average value can be
82 * extremely large, however, and it may take a very long simulation to accurately
83 * compute the average.
84 *
85 * @param context the Context for which to compute the current pressure
86 * @return the instantaneous pressure
87 */
88 public double computeCurrentPressure(Context context) {
89 return OpenMM_MonteCarloBarostat_computeCurrentPressure(pointer, context.getPointer());
90 }
91
92 /**
93 * Destroy the force.
94 */
95 @Override
96 public void destroy() {
97 if (pointer != null) {
98 OpenMM_MonteCarloBarostat_destroy(pointer);
99 pointer = null;
100 }
101 }
102
103 /**
104 * Get the default pressure acting on the system (in bar).
105 *
106 * @return the default pressure acting on the system, measured in bar.
107 */
108 public double getDefaultPressure() {
109 return OpenMM_MonteCarloBarostat_getDefaultPressure(pointer);
110 }
111
112 /**
113 * Get the default temperature at which the system is being maintained, measured in Kelvin.
114 *
115 * @return the default temperature at which the system is being maintained, measured in Kelvin.
116 */
117 public double getDefaultTemperature() {
118 return OpenMM_MonteCarloBarostat_getDefaultTemperature(pointer);
119 }
120
121 /**
122 * Get the frequency.
123 *
124 * @return The frequency.
125 */
126 public int getFrequency() {
127 return OpenMM_MonteCarloBarostat_getFrequency(pointer);
128 }
129
130 /**
131 * Get the random number seed.
132 *
133 * @return The random number seed.
134 */
135 public int getRandomNumberSeed() {
136 return OpenMM_MonteCarloBarostat_getRandomNumberSeed(pointer);
137 }
138
139 /**
140 * Set the default pressure acting on the system. This will affect any new Contexts you create,
141 * but not ones that already exist.
142 *
143 * @param pressure the default pressure acting on the system, measured in bar.
144 */
145 public void setDefaultPressure(double pressure) {
146 OpenMM_MonteCarloBarostat_setDefaultPressure(pointer, pressure);
147 }
148
149 /**
150 * Set the default temperature at which the system is being maintained. This will affect any new Contexts you create,
151 * but not ones that already exist.
152 *
153 * @param temperature the system temperature, measured in Kelvin.
154 */
155 public void setDefaultTemperature(double temperature) {
156 OpenMM_MonteCarloBarostat_setDefaultTemperature(pointer, temperature);
157 }
158
159 /**
160 * Set the frequency.
161 *
162 * @param frequency The frequency.
163 */
164 public void setFrequency(int frequency) {
165 OpenMM_MonteCarloBarostat_setFrequency(pointer, frequency);
166 }
167
168 /**
169 * Set the random number seed.
170 *
171 * @param seed The random number seed.
172 */
173 public void setRandomNumberSeed(int seed) {
174 OpenMM_MonteCarloBarostat_setRandomNumberSeed(pointer, seed);
175 }
176
177 /**
178 * Does the force use periodic boundary conditions?
179 *
180 * @return True if the force uses periodic boundary conditions.
181 */
182 public boolean usesPeriodicBoundaryConditions() {
183 int periodic = OpenMM_MonteCarloBarostat_usesPeriodicBoundaryConditions(pointer);
184 return periodic == 1;
185 }
186
187 }