1 // ****************************************************************************** 2 // 3 // Title: Force Field X. 4 // Description: Force Field X - Software for Molecular Biophysics. 5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025. 6 // 7 // This file is part of Force Field X. 8 // 9 // Force Field X is free software; you can redistribute it and/or modify it 10 // under the terms of the GNU General Public License version 3 as published by 11 // the Free Software Foundation. 12 // 13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT 14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 16 // details. 17 // 18 // You should have received a copy of the GNU General Public License along with 19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple 20 // Place, Suite 330, Boston, MA 02111-1307 USA 21 // 22 // Linking this library statically or dynamically with other modules is making a 23 // combined work based on this library. Thus, the terms and conditions of the 24 // GNU General Public License cover the whole combination. 25 // 26 // As a special exception, the copyright holders of this library give you 27 // permission to link this library with independent modules to produce an 28 // executable, regardless of the license terms of these independent modules, and 29 // to copy and distribute the resulting executable under terms of your choice, 30 // provided that you also meet, for each linked independent module, the terms 31 // and conditions of the license of that module. An independent module is a 32 // module which is not derived from or based on this library. If you modify this 33 // library, you may extend this exception to your version of the library, but 34 // you are not obligated to do so. If you do not wish to do so, delete this 35 // exception statement from your version. 36 // 37 // ****************************************************************************** 38 package ffx.openmm; 39 40 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_computeCurrentPressure; 41 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_create; 42 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_destroy; 43 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_getDefaultPressure; 44 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_getDefaultTemperature; 45 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_getFrequency; 46 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_getRandomNumberSeed; 47 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_setDefaultPressure; 48 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_setDefaultTemperature; 49 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_setFrequency; 50 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_setRandomNumberSeed; 51 import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloBarostat_usesPeriodicBoundaryConditions; 52 53 /** 54 * This class uses a Monte Carlo algorithm to adjust the size of the periodic box, simulating the 55 * effect of constant pressure. 56 * <p> 57 * This class assumes the simulation is also being run at constant temperature, and requires you 58 * to specify the system temperature (since it affects the acceptance probability for Monte Carlo 59 * moves). It does not actually perform temperature regulation, however. You must use another 60 * mechanism along with it to maintain the temperature, such as LangevinIntegrator or AndersenThermostat. 61 */ 62 public class MonteCarloBarostat extends Force { 63 64 /** 65 * Create a MonteCarloBarostat. 66 * 67 * @param pressure the default pressure acting on the system (in bar) 68 * @param temperature the default temperature at which the system is being maintained (in Kelvin) 69 * @param frequency the frequency at which Monte Carlo pressure changes should be attempted (in time steps) 70 */ 71 public MonteCarloBarostat(double pressure, double temperature, int frequency) { 72 super(OpenMM_MonteCarloBarostat_create(pressure, temperature, frequency)); 73 } 74 75 /** 76 * Compute the instantaneous pressure of a system to which this barostat is applied. 77 * <p> 78 * The pressure is computed from the molecular virial, using a finite difference to 79 * calculate the derivative of potential energy with respect to volume. For most systems 80 * in equilibrium, the time average of the instantaneous pressure should equal the 81 * pressure applied by the barostat. Fluctuations around the average value can be 82 * extremely large, however, and it may take a very long simulation to accurately 83 * compute the average. 84 * 85 * @param context the Context for which to compute the current pressure 86 * @return the instantaneous pressure 87 */ 88 public double computeCurrentPressure(Context context) { 89 return OpenMM_MonteCarloBarostat_computeCurrentPressure(pointer, context.getPointer()); 90 } 91 92 /** 93 * Destroy the force. 94 */ 95 @Override 96 public void destroy() { 97 if (pointer != null) { 98 OpenMM_MonteCarloBarostat_destroy(pointer); 99 pointer = null; 100 } 101 } 102 103 /** 104 * Get the default pressure acting on the system (in bar). 105 * 106 * @return the default pressure acting on the system, measured in bar. 107 */ 108 public double getDefaultPressure() { 109 return OpenMM_MonteCarloBarostat_getDefaultPressure(pointer); 110 } 111 112 /** 113 * Get the default temperature at which the system is being maintained, measured in Kelvin. 114 * 115 * @return the default temperature at which the system is being maintained, measured in Kelvin. 116 */ 117 public double getDefaultTemperature() { 118 return OpenMM_MonteCarloBarostat_getDefaultTemperature(pointer); 119 } 120 121 /** 122 * Get the frequency. 123 * 124 * @return The frequency. 125 */ 126 public int getFrequency() { 127 return OpenMM_MonteCarloBarostat_getFrequency(pointer); 128 } 129 130 /** 131 * Get the random number seed. 132 * 133 * @return The random number seed. 134 */ 135 public int getRandomNumberSeed() { 136 return OpenMM_MonteCarloBarostat_getRandomNumberSeed(pointer); 137 } 138 139 /** 140 * Set the default pressure acting on the system. This will affect any new Contexts you create, 141 * but not ones that already exist. 142 * 143 * @param pressure the default pressure acting on the system, measured in bar. 144 */ 145 public void setDefaultPressure(double pressure) { 146 OpenMM_MonteCarloBarostat_setDefaultPressure(pointer, pressure); 147 } 148 149 /** 150 * Set the default temperature at which the system is being maintained. This will affect any new Contexts you create, 151 * but not ones that already exist. 152 * 153 * @param temperature the system temperature, measured in Kelvin. 154 */ 155 public void setDefaultTemperature(double temperature) { 156 OpenMM_MonteCarloBarostat_setDefaultTemperature(pointer, temperature); 157 } 158 159 /** 160 * Set the frequency. 161 * 162 * @param frequency The frequency. 163 */ 164 public void setFrequency(int frequency) { 165 OpenMM_MonteCarloBarostat_setFrequency(pointer, frequency); 166 } 167 168 /** 169 * Set the random number seed. 170 * 171 * @param seed The random number seed. 172 */ 173 public void setRandomNumberSeed(int seed) { 174 OpenMM_MonteCarloBarostat_setRandomNumberSeed(pointer, seed); 175 } 176 177 /** 178 * Does the force use periodic boundary conditions? 179 * 180 * @return True if the force uses periodic boundary conditions. 181 */ 182 public boolean usesPeriodicBoundaryConditions() { 183 int periodic = OpenMM_MonteCarloBarostat_usesPeriodicBoundaryConditions(pointer); 184 return periodic == 1; 185 } 186 187 }