View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.openmm;
39  
40  import edu.uiowa.jopenmm.OpenMM_Vec3;
41  
42  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_Boolean.OpenMM_True;
43  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_create;
44  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_destroy;
45  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_getDefaultPressure;
46  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_getDefaultTemperature;
47  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_getFrequency;
48  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_getRandomNumberSeed;
49  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_getScaleX;
50  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_getScaleY;
51  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_getScaleZ;
52  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_setDefaultPressure;
53  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_setDefaultTemperature;
54  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_setFrequency;
55  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_setRandomNumberSeed;
56  import static edu.uiowa.jopenmm.OpenMMLibrary.OpenMM_MonteCarloAnisotropicBarostat_usesPeriodicBoundaryConditions;
57  
58  /**
59   * This class uses a Monte Carlo algorithm to adjust the size of the periodic box,
60   * simulating the effect of constant pressure. It assumes the simulation is running
61   * at constant temperature, and the box size is adjusted to maintain constant pressure.
62   * Unlike MonteCarloBarostat, this version allows independent scaling of the three
63   * box dimensions, making it suitable for anisotropic systems.
64   * <p>
65   * This class is most useful for simulating a system at constant pressure when
66   * anisotropic scaling is desired, such as for layered materials or systems with
67   * preferred orientations.
68   */
69  public class MonteCarloAnisotropicBarostat extends Force {
70  
71    /**
72     * Create a MonteCarloAnisotropicBarostat.
73     *
74     * @param defaultPressure    The default pressure acting on each axis (in bar).
75     * @param defaultTemperature The default temperature at which the system is being maintained (in Kelvin).
76     * @param scaleX             Whether to scale the X dimension of the periodic box.
77     * @param scaleY             Whether to scale the Y dimension of the periodic box.
78     * @param scaleZ             Whether to scale the Z dimension of the periodic box.
79     * @param frequency          The frequency at which Monte Carlo pressure changes should be attempted (in time steps).
80     */
81    public MonteCarloAnisotropicBarostat(OpenMM_Vec3 defaultPressure, double defaultTemperature,
82                                         int scaleX, int scaleY, int scaleZ, int frequency) {
83      super(OpenMM_MonteCarloAnisotropicBarostat_create(defaultPressure, defaultTemperature, scaleX, scaleY, scaleZ, frequency));
84    }
85  
86    /**
87     * Destroy the force.
88     */
89    @Override
90    public void destroy() {
91      if (pointer != null) {
92        OpenMM_MonteCarloAnisotropicBarostat_destroy(pointer);
93        pointer = null;
94      }
95    }
96  
97    /**
98     * Get the default pressure (in bar).
99     *
100    * @return The default pressure acting on each axis.
101    */
102   public OpenMM_Vec3 getDefaultPressure() {
103     return OpenMM_MonteCarloAnisotropicBarostat_getDefaultPressure(pointer);
104   }
105 
106   /**
107    * Get the default temperature at which the system is being maintained (in Kelvin).
108    *
109    * @return The default temperature.
110    */
111   public double getDefaultTemperature() {
112     return OpenMM_MonteCarloAnisotropicBarostat_getDefaultTemperature(pointer);
113   }
114 
115   /**
116    * Get the frequency (in time steps) at which Monte Carlo pressure changes should be attempted.
117    *
118    * @return The frequency of pressure change attempts.
119    */
120   public int getFrequency() {
121     return OpenMM_MonteCarloAnisotropicBarostat_getFrequency(pointer);
122   }
123 
124   /**
125    * Get the random number seed. See setRandomNumberSeed() for details.
126    *
127    * @return The random number seed.
128    */
129   public int getRandomNumberSeed() {
130     return OpenMM_MonteCarloAnisotropicBarostat_getRandomNumberSeed(pointer);
131   }
132 
133   /**
134    * Get whether to scale the X dimension of the periodic box.
135    *
136    * @return 1 if the X dimension should be scaled, 0 otherwise.
137    */
138   public int getScaleX() {
139     return OpenMM_MonteCarloAnisotropicBarostat_getScaleX(pointer);
140   }
141 
142   /**
143    * Get whether to scale the Y dimension of the periodic box.
144    *
145    * @return 1 if the Y dimension should be scaled, 0 otherwise.
146    */
147   public int getScaleY() {
148     return OpenMM_MonteCarloAnisotropicBarostat_getScaleY(pointer);
149   }
150 
151   /**
152    * Get whether to scale the Z dimension of the periodic box.
153    *
154    * @return 1 if the Z dimension should be scaled, 0 otherwise.
155    */
156   public int getScaleZ() {
157     return OpenMM_MonteCarloAnisotropicBarostat_getScaleZ(pointer);
158   }
159 
160   /**
161    * Set the default pressure acting on each axis (in bar).
162    *
163    * @param pressure The default pressure acting on each axis.
164    */
165   public void setDefaultPressure(OpenMM_Vec3 pressure) {
166     OpenMM_MonteCarloAnisotropicBarostat_setDefaultPressure(pointer, pressure);
167   }
168 
169   /**
170    * Set the default temperature at which the system is being maintained (in Kelvin).
171    *
172    * @param temperature The default temperature.
173    */
174   public void setDefaultTemperature(double temperature) {
175     OpenMM_MonteCarloAnisotropicBarostat_setDefaultTemperature(pointer, temperature);
176   }
177 
178   /**
179    * Set the frequency (in time steps) at which Monte Carlo pressure changes should be attempted.
180    *
181    * @param frequency The frequency of pressure change attempts.
182    */
183   public void setFrequency(int frequency) {
184     OpenMM_MonteCarloAnisotropicBarostat_setFrequency(pointer, frequency);
185   }
186 
187   /**
188    * Set the random number seed. The precise meaning of this parameter is undefined, and is left up
189    * to each Platform to interpret in an appropriate way. It is guaranteed that if two simulations
190    * are run with different random number seeds, the sequence of random numbers will be different.
191    * On the other hand, no guarantees are made about the behavior of simulations that use the same seed.
192    * In particular, Platforms are permitted to use non-deterministic algorithms which produce different
193    * results on successive runs, even if those runs were initialized identically.
194    * <p>
195    * If seed is set to 0 (which is the default value assigned), a unique seed is chosen when a Context
196    * is created from this Force. This is done to ensure that each Context receives unique random seeds
197    * without you needing to set them explicitly.
198    *
199    * @param seed The random number seed.
200    */
201   public void setRandomNumberSeed(int seed) {
202     OpenMM_MonteCarloAnisotropicBarostat_setRandomNumberSeed(pointer, seed);
203   }
204 
205   /**
206    * Returns whether this force makes use of periodic boundary conditions.
207    *
208    * @return True if the force uses periodic boundary conditions.
209    */
210   @Override
211   public boolean usesPeriodicBoundaryConditions() {
212     int pbc = OpenMM_MonteCarloAnisotropicBarostat_usesPeriodicBoundaryConditions(pointer);
213     return pbc == OpenMM_True;
214   }
215 }