1 // ****************************************************************************** 2 // 3 // Title: Force Field X. 4 // Description: Force Field X - Software for Molecular Biophysics. 5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025. 6 // 7 // This file is part of Force Field X. 8 // 9 // Force Field X is free software; you can redistribute it and/or modify it 10 // under the terms of the GNU General Public License version 3 as published by 11 // the Free Software Foundation. 12 // 13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT 14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 16 // details. 17 // 18 // You should have received a copy of the GNU General Public License along with 19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple 20 // Place, Suite 330, Boston, MA 02111-1307 USA 21 // 22 // Linking this library statically or dynamically with other modules is making a 23 // combined work based on this library. Thus, the terms and conditions of the 24 // GNU General Public License cover the whole combination. 25 // 26 // As a special exception, the copyright holders of this library give you 27 // permission to link this library with independent modules to produce an 28 // executable, regardless of the license terms of these independent modules, and 29 // to copy and distribute the resulting executable under terms of your choice, 30 // provided that you also meet, for each linked independent module, the terms 31 // and conditions of the license of that module. An independent module is a 32 // module which is not derived from or based on this library. If you modify this 33 // library, you may extend this exception to your version of the library, but 34 // you are not obligated to do so. If you do not wish to do so, delete this 35 // exception statement from your version. 36 // 37 // ****************************************************************************** 38 package ffx.numerics.multipole; 39 40 import jdk.incubator.vector.DoubleVector; 41 import jdk.incubator.vector.VectorMask; 42 import jdk.incubator.vector.VectorOperators; 43 44 /** 45 * The TholeTensorGlobal class computes derivatives of Thole damping via recursion to order <= 4 for 46 * Cartesian multipoles in either a global frame. 47 * 48 * @author Michael J. Schnieders 49 * @see <a href="http://doi.org/10.1142/9789812830364_0002" target="_blank"> Matt Challacombe, Eric 50 * Schwegler and Jan Almlof, Modern developments in Hartree-Fock theory: Fast methods for 51 * computing the Coulomb matrix. Computational Chemistry: Review of Current Trends. pp. 53-107, 52 * Ed. J. Leczszynski, World Scientifc, 1996. </a> 53 * @since 1.0 54 */ 55 public class TholeTensorGlobalSIMD extends CoulombTensorGlobalSIMD { 56 57 /** 58 * Constant <code>threeFifths=3.0 / 5.0</code> 59 */ 60 private static final double threeFifths = 3.0 / 5.0; 61 62 /** 63 * Constant <code>oneThirtyFifth=1.0 / 35.0</code> 64 */ 65 private static final double oneThirtyFifth = 1.0 / 35.0; 66 67 /** 68 * Thole damping parameter is set to min(pti,ptk)). 69 */ 70 private DoubleVector thole; 71 72 /** 73 * AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability. 74 */ 75 private DoubleVector AiAk; 76 77 /** 78 * Constructor for EwaldMultipoleTensorGlobal. 79 * 80 * @param order Tensor order. 81 * @param thole Thole damping parameter is set to min(pti,ptk)). 82 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability. 83 */ 84 public TholeTensorGlobalSIMD(int order, DoubleVector thole, DoubleVector AiAk) { 85 super(order); 86 this.thole = thole; 87 this.AiAk = AiAk; 88 this.operator = Operator.THOLE_FIELD; 89 90 // Source terms are currently defined up to order 4. 91 assert (order <= 4); 92 } 93 94 /** 95 * Set Thole damping parameters 96 * 97 * @param thole a double. 98 * @param AiAk a double. 99 */ 100 public void setThole(DoubleVector thole, DoubleVector AiAk) { 101 this.thole = thole; 102 this.AiAk = AiAk; 103 } 104 105 /** 106 * Check if the Thole damping is exponential is greater than zero (or the interaction can be 107 * neglected). 108 * 109 * @param r The separation distance. 110 * @return True if -thole*u^3 is greater than -50.0. 111 */ 112 public boolean checkThole(DoubleVector r) { 113 return checkThole(thole, AiAk, r); 114 } 115 116 /** 117 * Check if the Thole damping is exponential is greater than zero (or the interaction can be neglected). 118 * 119 * @param thole Thole damping parameter is set to min(pti,ptk)). 120 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability. 121 * @param r The separation distance. 122 * @return True if -thole*u^3 is greater than -50.0. 123 */ 124 protected static boolean checkThole(DoubleVector thole, DoubleVector AiAk, DoubleVector r) { 125 DoubleVector rAiAk = r.mul(AiAk); 126 VectorMask<Double> check = thole.mul(rAiAk).mul(rAiAk).mul(rAiAk).lt(50); 127 return check.anyTrue(); 128 } 129 130 /** 131 * Generate source terms for the Challacombe et al. recursion. 132 * 133 * @param T000 Location to store the source terms. 134 */ 135 @Override 136 protected void source(DoubleVector[] T000) { 137 // Compute the normal Coulomb auxiliary term. 138 super.source(T000); 139 140 // Add the Thole damping terms: edamp = exp(-thole*u^3). 141 tholeSource(thole, AiAk, R, T000); 142 } 143 144 /** 145 * Generate source terms for the Challacombe et al. recursion. 146 * 147 * @param thole Thole damping parameter is set to min(pti,ptk)). 148 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability. 149 * @param R The separation distance. 150 * @param T000 Location to store the source terms. 151 */ 152 protected static void tholeSource(DoubleVector thole, DoubleVector AiAk, DoubleVector R, DoubleVector[] T000) { 153 // Add the Thole damping terms: edamp = exp(-thole*u^3). 154 DoubleVector u = R.mul(AiAk); 155 DoubleVector u3 = thole.mul(u.mul(u).mul(u)); 156 DoubleVector u6 = u3.mul(u3); 157 DoubleVector u9 = u6.mul(u3); 158 DoubleVector expU3 = u3.neg().lanewise(VectorOperators.EXP); 159 160 // The zeroth order term is not calculated for Thole damping. 161 T000[0] = DoubleVector.zero(R.species()); 162 T000[1] = T000[1].mul(expU3); 163 T000[2] = T000[2].mul((u3.add(1.0)).mul(expU3)); 164 T000[3] = T000[3].mul((u3.add(1.0).add(u6.mul(threeFifths)).mul(expU3))); 165 T000[4] = T000[4].mul((u3.add(1.0).add(u6.mul(18.0).add(u9.mul(9.0)).mul(oneThirtyFifth)).mul(expU3))); 166 } 167 168 }