View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.numerics.multipole;
39  
40  import jdk.incubator.vector.DoubleVector;
41  import jdk.incubator.vector.VectorMask;
42  import jdk.incubator.vector.VectorOperators;
43  
44  /**
45   * The TholeTensorGlobal class computes derivatives of Thole damping via recursion to order <= 4 for
46   * Cartesian multipoles in either a global frame.
47   *
48   * @author Michael J. Schnieders
49   * @see <a href="http://doi.org/10.1142/9789812830364_0002" target="_blank"> Matt Challacombe, Eric
50   * Schwegler and Jan Almlof, Modern developments in Hartree-Fock theory: Fast methods for
51   * computing the Coulomb matrix. Computational Chemistry: Review of Current Trends. pp. 53-107,
52   * Ed. J. Leczszynski, World Scientifc, 1996. </a>
53   * @since 1.0
54   */
55  public class TholeTensorGlobalSIMD extends CoulombTensorGlobalSIMD {
56  
57    /**
58     * Constant <code>threeFifths=3.0 / 5.0</code>
59     */
60    private static final double threeFifths = 3.0 / 5.0;
61  
62    /**
63     * Constant <code>oneThirtyFifth=1.0 / 35.0</code>
64     */
65    private static final double oneThirtyFifth = 1.0 / 35.0;
66  
67    /**
68     * Thole damping parameter is set to min(pti,ptk)).
69     */
70    private DoubleVector thole;
71  
72    /**
73     * AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
74     */
75    private DoubleVector AiAk;
76  
77    /**
78     * Constructor for EwaldMultipoleTensorGlobal.
79     *
80     * @param order Tensor order.
81     * @param thole Thole damping parameter is set to min(pti,ptk)).
82     * @param AiAk  parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
83     */
84    public TholeTensorGlobalSIMD(int order, DoubleVector thole, DoubleVector AiAk) {
85      super(order);
86      this.thole = thole;
87      this.AiAk = AiAk;
88      this.operator = Operator.THOLE_FIELD;
89  
90      // Source terms are currently defined up to order 4.
91      assert (order <= 4);
92    }
93  
94    /**
95     * Set Thole damping parameters
96     *
97     * @param thole a double.
98     * @param AiAk  a double.
99     */
100   public void setThole(DoubleVector thole, DoubleVector AiAk) {
101     this.thole = thole;
102     this.AiAk = AiAk;
103   }
104 
105   /**
106    * Check if the Thole damping is exponential is greater than zero (or the interaction can be
107    * neglected).
108    *
109    * @param r The separation distance.
110    * @return True if -thole*u^3 is greater than -50.0.
111    */
112   public boolean checkThole(DoubleVector r) {
113     return checkThole(thole, AiAk, r);
114   }
115 
116   /**
117    * Check if the Thole damping is exponential is greater than zero (or the interaction can be neglected).
118    *
119    * @param thole Thole damping parameter is set to min(pti,ptk)).
120    * @param AiAk  parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
121    * @param r     The separation distance.
122    * @return True if -thole*u^3 is greater than -50.0.
123    */
124   protected static boolean checkThole(DoubleVector thole, DoubleVector AiAk, DoubleVector r) {
125     DoubleVector rAiAk = r.mul(AiAk);
126     VectorMask<Double> check = thole.mul(rAiAk).mul(rAiAk).mul(rAiAk).lt(50);
127     return check.anyTrue();
128   }
129 
130   /**
131    * Generate source terms for the Challacombe et al. recursion.
132    *
133    * @param T000 Location to store the source terms.
134    */
135   @Override
136   protected void source(DoubleVector[] T000) {
137     // Compute the normal Coulomb auxiliary term.
138     super.source(T000);
139 
140     // Add the Thole damping terms: edamp = exp(-thole*u^3).
141     tholeSource(thole, AiAk, R, T000);
142   }
143 
144   /**
145    * Generate source terms for the Challacombe et al. recursion.
146    *
147    * @param thole Thole damping parameter is set to min(pti,ptk)).
148    * @param AiAk  parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
149    * @param R     The separation distance.
150    * @param T000  Location to store the source terms.
151    */
152   protected static void tholeSource(DoubleVector thole, DoubleVector AiAk, DoubleVector R, DoubleVector[] T000) {
153     // Add the Thole damping terms: edamp = exp(-thole*u^3).
154     DoubleVector u = R.mul(AiAk);
155     DoubleVector u3 = thole.mul(u.mul(u).mul(u));
156     DoubleVector u6 = u3.mul(u3);
157     DoubleVector u9 = u6.mul(u3);
158     DoubleVector expU3 = u3.neg().lanewise(VectorOperators.EXP);
159 
160     // The zeroth order term is not calculated for Thole damping.
161     T000[0] = DoubleVector.zero(R.species());
162     T000[1] = T000[1].mul(expU3);
163     T000[2] = T000[2].mul((u3.add(1.0)).mul(expU3));
164     T000[3] = T000[3].mul((u3.add(1.0).add(u6.mul(threeFifths)).mul(expU3)));
165     T000[4] = T000[4].mul((u3.add(1.0).add(u6.mul(18.0).add(u9.mul(9.0)).mul(oneThirtyFifth)).mul(expU3)));
166   }
167 
168 }