1 // ******************************************************************************
2 //
3 // Title: Force Field X.
4 // Description: Force Field X - Software for Molecular Biophysics.
5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025.
6 //
7 // This file is part of Force Field X.
8 //
9 // Force Field X is free software; you can redistribute it and/or modify it
10 // under the terms of the GNU General Public License version 3 as published by
11 // the Free Software Foundation.
12 //
13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 // details.
17 //
18 // You should have received a copy of the GNU General Public License along with
19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20 // Place, Suite 330, Boston, MA 02111-1307 USA
21 //
22 // Linking this library statically or dynamically with other modules is making a
23 // combined work based on this library. Thus, the terms and conditions of the
24 // GNU General Public License cover the whole combination.
25 //
26 // As a special exception, the copyright holders of this library give you
27 // permission to link this library with independent modules to produce an
28 // executable, regardless of the license terms of these independent modules, and
29 // to copy and distribute the resulting executable under terms of your choice,
30 // provided that you also meet, for each linked independent module, the terms
31 // and conditions of the license of that module. An independent module is a
32 // module which is not derived from or based on this library. If you modify this
33 // library, you may extend this exception to your version of the library, but
34 // you are not obligated to do so. If you do not wish to do so, delete this
35 // exception statement from your version.
36 //
37 // ******************************************************************************
38 package ffx.numerics.multipole;
39
40 import jdk.incubator.vector.DoubleVector;
41 import jdk.incubator.vector.VectorMask;
42 import jdk.incubator.vector.VectorOperators;
43
44 /**
45 * The TholeTensorGlobal class computes derivatives of Thole damping via recursion to order <= 4 for
46 * Cartesian multipoles in either a global frame.
47 *
48 * @author Michael J. Schnieders
49 * @see <a href="http://doi.org/10.1142/9789812830364_0002" target="_blank"> Matt Challacombe, Eric
50 * Schwegler and Jan Almlof, Modern developments in Hartree-Fock theory: Fast methods for
51 * computing the Coulomb matrix. Computational Chemistry: Review of Current Trends. pp. 53-107,
52 * Ed. J. Leczszynski, World Scientifc, 1996. </a>
53 * @since 1.0
54 */
55 public class TholeTensorGlobalSIMD extends CoulombTensorGlobalSIMD {
56
57 /**
58 * Constant <code>threeFifths=3.0 / 5.0</code>
59 */
60 private static final double threeFifths = 3.0 / 5.0;
61
62 /**
63 * Constant <code>oneThirtyFifth=1.0 / 35.0</code>
64 */
65 private static final double oneThirtyFifth = 1.0 / 35.0;
66
67 /**
68 * Thole damping parameter is set to min(pti,ptk)).
69 */
70 private DoubleVector thole;
71
72 /**
73 * AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
74 */
75 private DoubleVector AiAk;
76
77 /**
78 * Constructor for EwaldMultipoleTensorGlobal.
79 *
80 * @param order Tensor order.
81 * @param thole Thole damping parameter is set to min(pti,ptk)).
82 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
83 */
84 public TholeTensorGlobalSIMD(int order, DoubleVector thole, DoubleVector AiAk) {
85 super(order);
86 this.thole = thole;
87 this.AiAk = AiAk;
88 this.operator = Operator.THOLE_FIELD;
89
90 // Source terms are currently defined up to order 4.
91 assert (order <= 4);
92 }
93
94 /**
95 * Set Thole damping parameters
96 *
97 * @param thole a double.
98 * @param AiAk a double.
99 */
100 public void setThole(DoubleVector thole, DoubleVector AiAk) {
101 this.thole = thole;
102 this.AiAk = AiAk;
103 }
104
105 /**
106 * Check if the Thole damping is exponential is greater than zero (or the interaction can be
107 * neglected).
108 *
109 * @param r The separation distance.
110 * @return True if -thole*u^3 is greater than -50.0.
111 */
112 public boolean checkThole(DoubleVector r) {
113 return checkThole(thole, AiAk, r);
114 }
115
116 /**
117 * Check if the Thole damping is exponential is greater than zero (or the interaction can be neglected).
118 *
119 * @param thole Thole damping parameter is set to min(pti,ptk)).
120 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
121 * @param r The separation distance.
122 * @return True if -thole*u^3 is greater than -50.0.
123 */
124 protected static boolean checkThole(DoubleVector thole, DoubleVector AiAk, DoubleVector r) {
125 DoubleVector rAiAk = r.mul(AiAk);
126 VectorMask<Double> check = thole.mul(rAiAk).mul(rAiAk).mul(rAiAk).lt(50);
127 return check.anyTrue();
128 }
129
130 /**
131 * Generate source terms for the Challacombe et al. recursion.
132 *
133 * @param T000 Location to store the source terms.
134 */
135 @Override
136 protected void source(DoubleVector[] T000) {
137 // Compute the normal Coulomb auxiliary term.
138 super.source(T000);
139
140 // Add the Thole damping terms: edamp = exp(-thole*u^3).
141 tholeSource(thole, AiAk, R, T000);
142 }
143
144 /**
145 * Generate source terms for the Challacombe et al. recursion.
146 *
147 * @param thole Thole damping parameter is set to min(pti,ptk)).
148 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
149 * @param R The separation distance.
150 * @param T000 Location to store the source terms.
151 */
152 protected static void tholeSource(DoubleVector thole, DoubleVector AiAk, DoubleVector R, DoubleVector[] T000) {
153 // Add the Thole damping terms: edamp = exp(-thole*u^3).
154 DoubleVector u = R.mul(AiAk);
155 DoubleVector u3 = thole.mul(u.mul(u).mul(u));
156 DoubleVector u6 = u3.mul(u3);
157 DoubleVector u9 = u6.mul(u3);
158 DoubleVector expU3 = u3.neg().lanewise(VectorOperators.EXP);
159
160 // The zeroth order term is not calculated for Thole damping.
161 T000[0] = DoubleVector.zero(R.species());
162 T000[1] = T000[1].mul(expU3);
163 T000[2] = T000[2].mul((u3.add(1.0)).mul(expU3));
164 T000[3] = T000[3].mul((u3.add(1.0).add(u6.mul(threeFifths)).mul(expU3)));
165 T000[4] = T000[4].mul((u3.add(1.0).add(u6.mul(18.0).add(u9.mul(9.0)).mul(oneThirtyFifth)).mul(expU3)));
166 }
167
168 }