1 // ******************************************************************************
2 //
3 // Title: Force Field X.
4 // Description: Force Field X - Software for Molecular Biophysics.
5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025.
6 //
7 // This file is part of Force Field X.
8 //
9 // Force Field X is free software; you can redistribute it and/or modify it
10 // under the terms of the GNU General Public License version 3 as published by
11 // the Free Software Foundation.
12 //
13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 // details.
17 //
18 // You should have received a copy of the GNU General Public License along with
19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20 // Place, Suite 330, Boston, MA 02111-1307 USA
21 //
22 // Linking this library statically or dynamically with other modules is making a
23 // combined work based on this library. Thus, the terms and conditions of the
24 // GNU General Public License cover the whole combination.
25 //
26 // As a special exception, the copyright holders of this library give you
27 // permission to link this library with independent modules to produce an
28 // executable, regardless of the license terms of these independent modules, and
29 // to copy and distribute the resulting executable under terms of your choice,
30 // provided that you also meet, for each linked independent module, the terms
31 // and conditions of the license of that module. An independent module is a
32 // module which is not derived from or based on this library. If you modify this
33 // library, you may extend this exception to your version of the library, but
34 // you are not obligated to do so. If you do not wish to do so, delete this
35 // exception statement from your version.
36 //
37 // ******************************************************************************
38 package ffx.numerics.multipole;
39
40 import static java.lang.Math.pow;
41 import static org.apache.commons.math3.util.FastMath.exp;
42
43 /**
44 * The TholeTensorGlobal class computes derivatives of Thole damping via recursion to order <= 4 for
45 * Cartesian multipoles in either a global frame.
46 *
47 * @author Michael J. Schnieders
48 * @see <a href="http://doi.org/10.1142/9789812830364_0002" target="_blank"> Matt Challacombe, Eric
49 * Schwegler and Jan Almlof, Modern developments in Hartree-Fock theory: Fast methods for
50 * computing the Coulomb matrix. Computational Chemistry: Review of Current Trends. pp. 53-107,
51 * Ed. J. Leczszynski, World Scientifc, 1996. </a>
52 * @since 1.0
53 */
54 public class TholeTensorGlobal extends CoulombTensorGlobal {
55
56 /** Constant <code>threeFifths=3.0 / 5.0</code> */
57 private static final double threeFifths = 3.0 / 5.0;
58
59 /** Constant <code>oneThirtyFifth=1.0 / 35.0</code> */
60 private static final double oneThirtyFifth = 1.0 / 35.0;
61
62 /**
63 * Thole damping parameter is set to min(pti,ptk)).
64 */
65 private double thole;
66
67 /**
68 * AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
69 */
70 private double AiAk;
71 private boolean directDamping;
72
73 /**
74 * Constructor for EwaldMultipoleTensorGlobal.
75 *
76 * @param order Tensor order.
77 * @param thole Thole damping parameter is set to min(pti,ptk)).
78 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
79 */
80 public TholeTensorGlobal(int order, double thole, double AiAk) {
81 super(order);
82 this.thole = thole;
83 this.AiAk = AiAk;
84 this.operator = Operator.THOLE_FIELD;
85
86 // Source terms are currently defined up to order 4.
87 assert (order <= 4);
88 }
89
90 public TholeTensorGlobal(int order, double thole, double AiAk, boolean directDamping) {
91 this(order, thole, AiAk);
92 this.directDamping = directDamping;
93 if(directDamping) {
94 this.operator = Operator.THOLE_DIRECT_FIELD;
95 }
96 }
97
98 /**
99 * Set Thole damping parameters
100 *
101 * @param thole a double.
102 * @param AiAk a double.
103 */
104 public void setThole(double thole, double AiAk) {
105 this.thole = thole;
106 this.AiAk = AiAk;
107 }
108
109 /**
110 * Check if the Thole damping is exponential is greater than zero (or the interaction can be
111 * neglected).
112 *
113 * @param r The separation distance.
114 * @return True if -thole*u^3 is greater than -50.0.
115 */
116 public boolean checkThole(double r) {
117 return checkThole(thole, AiAk, r);
118 }
119
120 /**
121 * Check if the Thole damping is exponential is greater than zero (or the interaction can be
122 * neglected).
123 *
124 * @param thole Thole damping parameter is set to min(pti,ptk)).
125 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
126 * @param r The separation distance.
127 * @return True if -thole*u^3 is greater than -50.0.
128 */
129 protected static boolean checkThole(double thole, double AiAk, double r) {
130 double rAiAk = r * AiAk;
131 return (-thole * rAiAk * rAiAk * rAiAk > -50.0);
132 }
133
134 /**
135 * Generate source terms for the Challacombe et al. recursion.
136 *
137 * @param T000 Location to store the source terms.
138 */
139 @Override
140 protected void source(double[] T000) {
141 // Compute the normal Coulomb auxiliary term.
142 super.source(T000);
143
144 // Add the Thole damping terms: edamp = exp(-thole*u^3).
145 tholeSource(thole, AiAk, R, directDamping, T000);
146 }
147
148 /**
149 * Generate source terms for the Challacombe et al. recursion.
150 *
151 * @param thole Thole damping parameter is set to min(pti,ptk)).
152 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
153 * @param R The separation distance.
154 * @param T000 Location to store the source terms.
155 */
156 protected static void tholeSource(double thole, double AiAk, double R, boolean direct, double[] T000) {
157 if (!direct) { // Add the Thole damping terms: edamp = exp(-thole*u^3).
158 double u = R * AiAk;
159 double u3 = thole * u * u * u;
160 double u6 = u3 * u3;
161 double u9 = u6 * u3;
162 double expU3 = exp(-u3);
163
164 // The zeroth order term is not calculated for Thole damping.
165 T000[0] = 0.0;
166 T000[1] *= expU3;
167 T000[2] *= (1.0 + u3) * expU3;
168 T000[3] *= (1.0 + u3 + threeFifths * u6) * expU3;
169 T000[4] *= (1.0 + u3 + (18.0 * u6 + 9.0 * u9) * oneThirtyFifth) * expU3;
170
171 } else { // Damping for direct dipole edamp = 1-exp(-thole*u^(3/2)).
172 double u = R * AiAk;
173 double u32 = thole * pow(u, 3.0/2.0);
174 double u62 = u32 * u32;
175 double expU32 = exp(-u32);
176
177 // The zeroth order term is not calculated for direct Thole damping either.
178 T000[0] = 0.0;
179 T000[1] *= 1 - expU32;
180 T000[2] *= 1 - (1.0 + .5 * u32) * expU32;
181 T000[3] *= 1 - (1.0 + (39.0 * u32 + 9.0 * u62)/60.0) * expU32;
182 T000[4] *= 1 - (1.0 + (609.0*u32 + 189.0*u62 + 27*u62*u32)/840.0) * expU32;
183 }
184 }
185
186 }