View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.numerics.multipole;
39  
40  import static java.lang.Math.pow;
41  import static org.apache.commons.math3.util.FastMath.exp;
42  
43  /**
44   * The TholeTensorGlobal class computes derivatives of Thole damping via recursion to order <= 4 for
45   * Cartesian multipoles in either a global frame.
46   *
47   * @author Michael J. Schnieders
48   * @see <a href="http://doi.org/10.1142/9789812830364_0002" target="_blank"> Matt Challacombe, Eric
49   *     Schwegler and Jan Almlof, Modern developments in Hartree-Fock theory: Fast methods for
50   *     computing the Coulomb matrix. Computational Chemistry: Review of Current Trends. pp. 53-107,
51   *     Ed. J. Leczszynski, World Scientifc, 1996. </a>
52   * @since 1.0
53   */
54  public class TholeTensorGlobal extends CoulombTensorGlobal {
55  
56    /** Constant <code>threeFifths=3.0 / 5.0</code> */
57    private static final double threeFifths = 3.0 / 5.0;
58  
59    /** Constant <code>oneThirtyFifth=1.0 / 35.0</code> */
60    private static final double oneThirtyFifth = 1.0 / 35.0;
61  
62    /**
63     * Thole damping parameter is set to min(pti,ptk)).
64     */
65    private double thole;
66  
67    /**
68     * AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
69     */
70    private double AiAk;
71    private boolean directDamping;
72  
73    /**
74     * Constructor for EwaldMultipoleTensorGlobal.
75     *
76     * @param order Tensor order.
77     * @param thole Thole damping parameter is set to min(pti,ptk)).
78     * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
79     */
80    public TholeTensorGlobal(int order, double thole, double AiAk) {
81      super(order);
82      this.thole = thole;
83      this.AiAk = AiAk;
84      this.operator = Operator.THOLE_FIELD;
85  
86      // Source terms are currently defined up to order 4.
87      assert (order <= 4);
88    }
89  
90    public TholeTensorGlobal(int order, double thole, double AiAk, boolean directDamping) {
91      this(order, thole, AiAk);
92      this.directDamping = directDamping;
93      if(directDamping) {
94        this.operator = Operator.THOLE_DIRECT_FIELD;
95      }
96    }
97  
98    /**
99     * Set Thole damping parameters
100    *
101    * @param thole a double.
102    * @param AiAk a double.
103    */
104   public void setThole(double thole, double AiAk) {
105     this.thole = thole;
106     this.AiAk = AiAk;
107   }
108 
109   /**
110    * Check if the Thole damping is exponential is greater than zero (or the interaction can be
111    * neglected).
112    *
113    * @param r The separation distance.
114    * @return True if -thole*u^3 is greater than -50.0.
115    */
116   public boolean checkThole(double r) {
117     return checkThole(thole, AiAk, r);
118   }
119 
120   /**
121    * Check if the Thole damping is exponential is greater than zero (or the interaction can be
122    * neglected).
123    *
124    * @param thole Thole damping parameter is set to min(pti,ptk)).
125    * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
126    * @param r The separation distance.
127    * @return True if -thole*u^3 is greater than -50.0.
128    */
129   protected static boolean checkThole(double thole, double AiAk, double r) {
130     double rAiAk = r * AiAk;
131     return (-thole * rAiAk * rAiAk * rAiAk > -50.0);
132   }
133 
134   /**
135    * Generate source terms for the Challacombe et al. recursion.
136    *
137    * @param T000 Location to store the source terms.
138    */
139   @Override
140   protected void source(double[] T000) {
141     // Compute the normal Coulomb auxiliary term.
142     super.source(T000);
143 
144     // Add the Thole damping terms: edamp = exp(-thole*u^3).
145     tholeSource(thole, AiAk, R, directDamping, T000);
146   }
147 
148   /**
149    * Generate source terms for the Challacombe et al. recursion.
150    *
151    * @param thole Thole damping parameter is set to min(pti,ptk)).
152    * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability.
153    * @param R The separation distance.
154    * @param T000 Location to store the source terms.
155    */
156   protected static void tholeSource(double thole, double AiAk, double R, boolean direct, double[] T000) {
157     if (!direct) { // Add the Thole damping terms: edamp = exp(-thole*u^3).
158       double u = R * AiAk;
159       double u3 = thole * u * u * u;
160       double u6 = u3 * u3;
161       double u9 = u6 * u3;
162       double expU3 = exp(-u3);
163 
164       // The zeroth order term is not calculated for Thole damping.
165       T000[0] = 0.0;
166       T000[1] *= expU3;
167       T000[2] *= (1.0 + u3) * expU3;
168       T000[3] *= (1.0 + u3 + threeFifths * u6) * expU3;
169       T000[4] *= (1.0 + u3 + (18.0 * u6 + 9.0 * u9) * oneThirtyFifth) * expU3;
170 
171     } else { // Damping for direct dipole edamp = 1-exp(-thole*u^(3/2)).
172       double u = R * AiAk;
173       double u32 = thole * pow(u, 3.0/2.0);
174       double u62 = u32 * u32;
175       double expU32 = exp(-u32);
176 
177       // The zeroth order term is not calculated for direct Thole damping either.
178       T000[0] = 0.0;
179       T000[1] *= 1 - expU32;
180       T000[2] *= 1 - (1.0 + .5 * u32) * expU32;
181       T000[3] *= 1 - (1.0 + (39.0 * u32 + 9.0 * u62)/60.0) * expU32;
182       T000[4] *= 1 - (1.0 + (609.0*u32 + 189.0*u62 + 27*u62*u32)/840.0) * expU32;
183     }
184   }
185 
186 }