1 // ****************************************************************************** 2 // 3 // Title: Force Field X. 4 // Description: Force Field X - Software for Molecular Biophysics. 5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025. 6 // 7 // This file is part of Force Field X. 8 // 9 // Force Field X is free software; you can redistribute it and/or modify it 10 // under the terms of the GNU General Public License version 3 as published by 11 // the Free Software Foundation. 12 // 13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT 14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 16 // details. 17 // 18 // You should have received a copy of the GNU General Public License along with 19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple 20 // Place, Suite 330, Boston, MA 02111-1307 USA 21 // 22 // Linking this library statically or dynamically with other modules is making a 23 // combined work based on this library. Thus, the terms and conditions of the 24 // GNU General Public License cover the whole combination. 25 // 26 // As a special exception, the copyright holders of this library give you 27 // permission to link this library with independent modules to produce an 28 // executable, regardless of the license terms of these independent modules, and 29 // to copy and distribute the resulting executable under terms of your choice, 30 // provided that you also meet, for each linked independent module, the terms 31 // and conditions of the license of that module. An independent module is a 32 // module which is not derived from or based on this library. If you modify this 33 // library, you may extend this exception to your version of the library, but 34 // you are not obligated to do so. If you do not wish to do so, delete this 35 // exception statement from your version. 36 // 37 // ****************************************************************************** 38 package ffx.numerics.multipole; 39 40 import static java.lang.Math.pow; 41 import static org.apache.commons.math3.util.FastMath.exp; 42 43 /** 44 * The TholeTensorGlobal class computes derivatives of Thole damping via recursion to order <= 4 for 45 * Cartesian multipoles in either a global frame. 46 * 47 * @author Michael J. Schnieders 48 * @see <a href="http://doi.org/10.1142/9789812830364_0002" target="_blank"> Matt Challacombe, Eric 49 * Schwegler and Jan Almlof, Modern developments in Hartree-Fock theory: Fast methods for 50 * computing the Coulomb matrix. Computational Chemistry: Review of Current Trends. pp. 53-107, 51 * Ed. J. Leczszynski, World Scientifc, 1996. </a> 52 * @since 1.0 53 */ 54 public class TholeTensorGlobal extends CoulombTensorGlobal { 55 56 /** Constant <code>threeFifths=3.0 / 5.0</code> */ 57 private static final double threeFifths = 3.0 / 5.0; 58 59 /** Constant <code>oneThirtyFifth=1.0 / 35.0</code> */ 60 private static final double oneThirtyFifth = 1.0 / 35.0; 61 62 /** 63 * Thole damping parameter is set to min(pti,ptk)). 64 */ 65 private double thole; 66 67 /** 68 * AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability. 69 */ 70 private double AiAk; 71 private boolean directDamping; 72 73 /** 74 * Constructor for EwaldMultipoleTensorGlobal. 75 * 76 * @param order Tensor order. 77 * @param thole Thole damping parameter is set to min(pti,ptk)). 78 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability. 79 */ 80 public TholeTensorGlobal(int order, double thole, double AiAk) { 81 super(order); 82 this.thole = thole; 83 this.AiAk = AiAk; 84 this.operator = Operator.THOLE_FIELD; 85 86 // Source terms are currently defined up to order 4. 87 assert (order <= 4); 88 } 89 90 public TholeTensorGlobal(int order, double thole, double AiAk, boolean directDamping) { 91 this(order, thole, AiAk); 92 this.directDamping = directDamping; 93 if(directDamping) { 94 this.operator = Operator.THOLE_DIRECT_FIELD; 95 } 96 } 97 98 /** 99 * Set Thole damping parameters 100 * 101 * @param thole a double. 102 * @param AiAk a double. 103 */ 104 public void setThole(double thole, double AiAk) { 105 this.thole = thole; 106 this.AiAk = AiAk; 107 } 108 109 /** 110 * Check if the Thole damping is exponential is greater than zero (or the interaction can be 111 * neglected). 112 * 113 * @param r The separation distance. 114 * @return True if -thole*u^3 is greater than -50.0. 115 */ 116 public boolean checkThole(double r) { 117 return checkThole(thole, AiAk, r); 118 } 119 120 /** 121 * Check if the Thole damping is exponential is greater than zero (or the interaction can be 122 * neglected). 123 * 124 * @param thole Thole damping parameter is set to min(pti,ptk)). 125 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability. 126 * @param r The separation distance. 127 * @return True if -thole*u^3 is greater than -50.0. 128 */ 129 protected static boolean checkThole(double thole, double AiAk, double r) { 130 double rAiAk = r * AiAk; 131 return (-thole * rAiAk * rAiAk * rAiAk > -50.0); 132 } 133 134 /** 135 * Generate source terms for the Challacombe et al. recursion. 136 * 137 * @param T000 Location to store the source terms. 138 */ 139 @Override 140 protected void source(double[] T000) { 141 // Compute the normal Coulomb auxiliary term. 142 super.source(T000); 143 144 // Add the Thole damping terms: edamp = exp(-thole*u^3). 145 tholeSource(thole, AiAk, R, directDamping, T000); 146 } 147 148 /** 149 * Generate source terms for the Challacombe et al. recursion. 150 * 151 * @param thole Thole damping parameter is set to min(pti,ptk)). 152 * @param AiAk parameter = 1/(alphaI^6*alphaK^6) where alpha is polarizability. 153 * @param R The separation distance. 154 * @param T000 Location to store the source terms. 155 */ 156 protected static void tholeSource(double thole, double AiAk, double R, boolean direct, double[] T000) { 157 if (!direct) { // Add the Thole damping terms: edamp = exp(-thole*u^3). 158 double u = R * AiAk; 159 double u3 = thole * u * u * u; 160 double u6 = u3 * u3; 161 double u9 = u6 * u3; 162 double expU3 = exp(-u3); 163 164 // The zeroth order term is not calculated for Thole damping. 165 T000[0] = 0.0; 166 T000[1] *= expU3; 167 T000[2] *= (1.0 + u3) * expU3; 168 T000[3] *= (1.0 + u3 + threeFifths * u6) * expU3; 169 T000[4] *= (1.0 + u3 + (18.0 * u6 + 9.0 * u9) * oneThirtyFifth) * expU3; 170 171 } else { // Damping for direct dipole edamp = 1-exp(-thole*u^(3/2)). 172 double u = R * AiAk; 173 double u32 = thole * pow(u, 3.0/2.0); 174 double u62 = u32 * u32; 175 double expU32 = exp(-u32); 176 177 // The zeroth order term is not calculated for direct Thole damping either. 178 T000[0] = 0.0; 179 T000[1] *= 1 - expU32; 180 T000[2] *= 1 - (1.0 + .5 * u32) * expU32; 181 T000[3] *= 1 - (1.0 + (39.0 * u32 + 9.0 * u62)/60.0) * expU32; 182 T000[4] *= 1 - (1.0 + (609.0*u32 + 189.0*u62 + 27*u62*u32)/840.0) * expU32; 183 } 184 } 185 186 }