View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.numerics.multipole;
39  
40  import jdk.incubator.vector.DoubleVector;
41  
42  import static ffx.numerics.multipole.GKMultipoleOrder.DIPOLE;
43  import static ffx.numerics.multipole.GKMultipoleOrder.MONOPOLE;
44  import static ffx.numerics.multipole.GKMultipoleOrder.QUADRUPOLE;
45  import static ffx.numerics.multipole.GKTensorMode.BORN;
46  import static ffx.numerics.multipole.GKTensorMode.POTENTIAL;
47  
48  /**
49   * The GKEnergyQI class computes the Generalized Kirkwood energy and forces using a QI frame.
50   */
51  public class GKEnergyQISIMD {
52  
53    private final GKSourceSIMD gkSource;
54    private final GKTensorQISIMD gkMonopole;
55    private final GKTensorQISIMD gkDipole;
56    private final GKTensorQISIMD gkQuadrupole;
57  
58    private final DoubleVector one = DoubleVector.zero(DoubleVector.SPECIES_PREFERRED).add(1.0);
59  
60    /**
61     * Compute the GK Energy using a QI frame.
62     *
63     * @param soluteDielectric  Solute dielectric constant.
64     * @param solventDielectric Solvent dielectric constant.
65     * @param gkc               The GK interaction parameter.
66     * @param gradient          If true, the gradient will be computed.
67     */
68    public GKEnergyQISIMD(double soluteDielectric, double solventDielectric, double gkc, boolean gradient) {
69      int monopoleOrder = 2;
70      int dipoleOrder = 3;
71      int quadrupoleOrder = 4;
72      if (gradient) {
73        monopoleOrder = 3;
74        dipoleOrder = 4;
75        quadrupoleOrder = 5;
76      }
77      gkSource = new GKSourceSIMD(quadrupoleOrder, gkc);
78      gkMonopole = new GKTensorQISIMD(MONOPOLE, monopoleOrder, gkSource, soluteDielectric, solventDielectric);
79      gkDipole = new GKTensorQISIMD(DIPOLE, dipoleOrder, gkSource, soluteDielectric, solventDielectric);
80      gkQuadrupole = new GKTensorQISIMD(QUADRUPOLE, quadrupoleOrder, gkSource, soluteDielectric, solventDielectric);
81    }
82  
83    /**
84     * Initialize the potential.
85     *
86     * @param r   The separation. vector.
87     * @param r2  The squared separation.
88     * @param rbi The Born radius of atom i.
89     * @param rbk The Born radius of atom k.
90     */
91    public void initPotential(DoubleVector[] r, DoubleVector r2, DoubleVector rbi, DoubleVector rbk) {
92      gkSource.generateSource(POTENTIAL, QUADRUPOLE, r2, rbi, rbk);
93      gkMonopole.setR(r);
94      gkDipole.setR(r);
95      gkQuadrupole.setR(r);
96      gkMonopole.generateTensor();
97      gkDipole.generateTensor();
98      gkQuadrupole.generateTensor();
99    }
100 
101   /**
102    * Initialize for computing Born chain-rule terms.
103    *
104    * @param r   The separation vector.
105    * @param r2  The squared separation.
106    * @param rbi The Born radius of atom i.
107    * @param rbk The Born radius of atom k.
108    */
109   public void initBorn(DoubleVector[] r, DoubleVector r2, DoubleVector rbi, DoubleVector rbk) {
110     gkSource.generateSource(BORN, QUADRUPOLE, r2, rbi, rbk);
111     gkMonopole.setR(r);
112     gkDipole.setR(r);
113     gkQuadrupole.setR(r);
114     gkMonopole.generateTensor();
115     gkDipole.generateTensor();
116     gkQuadrupole.generateTensor();
117   }
118 
119   /**
120    * Compute the multipole energy.
121    *
122    * @param mI The polarizable multipole of atom i.
123    * @param mK The polarizable multipole of atom k.
124    * @return The multipole energy.
125    */
126   public DoubleVector multipoleEnergy(PolarizableMultipoleSIMD mI, PolarizableMultipoleSIMD mK) {
127     DoubleVector em = gkMonopole.multipoleEnergy(mI, mK);
128     DoubleVector ed = gkDipole.multipoleEnergy(mI, mK);
129     DoubleVector eq = gkQuadrupole.multipoleEnergy(mI, mK);
130     return em.add(ed).add(eq);
131   }
132 
133   /**
134    * Compute the polarization energy.
135    *
136    * @param mI The polarizable multipole of atom i.
137    * @param mK The polarizable multipole of atom k.
138    * @return The polarization energy.
139    */
140   public DoubleVector polarizationEnergy(PolarizableMultipoleSIMD mI, PolarizableMultipoleSIMD mK) {
141     DoubleVector emp = gkMonopole.polarizationEnergy(mI, mK);
142     DoubleVector edp = gkDipole.polarizationEnergy(mI, mK);
143     DoubleVector eqp = gkQuadrupole.polarizationEnergy(mI, mK);
144     return emp.add(edp).add(eqp);
145   }
146 
147   /**
148    * Compute the multipole energy and gradient.
149    *
150    * @param mI The polarizable multipole of atom i.
151    * @param mK The polarizable multipole of atom k.
152    * @param gI The gradient for atom i.
153    * @param tI The torque on atom i.
154    * @param tK The torque on atom k.
155    * @return The multipole energy.
156    */
157   public DoubleVector multipoleEnergyAndGradient(PolarizableMultipoleSIMD mI, PolarizableMultipoleSIMD mK,
158                                                  DoubleVector[] gI, DoubleVector[] tI, DoubleVector[] tK) {
159     DoubleVector[] gK = new DoubleVector[3];
160     DoubleVector em = gkMonopole.multipoleEnergyAndGradient(mI, mK, gI, gK, tI, tK);
161     DoubleVector ed = gkDipole.multipoleEnergyAndGradient(mI, mK, gI, gK, tI, tK);
162     DoubleVector eq = gkQuadrupole.multipoleEnergyAndGradient(mI, mK, gI, gK, tI, tK);
163     return em.add(ed).add(eq);
164   }
165 
166   /**
167    * Compute the polarization energy and gradient.
168    *
169    * @param mI         The polarizable multipole of atom i.
170    * @param mK         The polarizable multipole of atom k.
171    * @param mutualMask The mutual polarization mask.
172    * @param gI         The gradient for atom i.
173    * @param tI         The torque on atom i.
174    * @param tK         The torque on atom k.
175    * @return The polarization energy.
176    */
177   public DoubleVector polarizationEnergyAndGradient(PolarizableMultipoleSIMD mI, PolarizableMultipoleSIMD mK, DoubleVector mutualMask,
178                                                     DoubleVector[] gI, DoubleVector[] tI, DoubleVector[] tK) {
179     DoubleVector emp = gkMonopole.polarizationEnergyAndGradient(mI, mK, one, one, mutualMask, gI, tI, tK);
180     DoubleVector edp = gkDipole.polarizationEnergyAndGradient(mI, mK, one, one, mutualMask, gI, tI, tK);
181     DoubleVector eqp = gkQuadrupole.polarizationEnergyAndGradient(mI, mK, one, one, mutualMask, gI, tI, tK);
182     // Sum the GK polarization interaction energy.
183     return emp.add(edp).add(eqp);
184   }
185 
186   /**
187    * Compute the Born chain-rule term for the multipole energy.
188    *
189    * @param mI The polarizable multipole of atom i.
190    * @param mK The polarizable multipole of atom k.
191    * @return The Born chain-rule term.
192    */
193   public DoubleVector multipoleEnergyBornGrad(PolarizableMultipoleSIMD mI, PolarizableMultipoleSIMD mK) {
194     DoubleVector db = gkMonopole.multipoleEnergyBornGrad(mI, mK);
195     db = db.add(gkDipole.multipoleEnergyBornGrad(mI, mK));
196     db = db.add(gkQuadrupole.multipoleEnergyBornGrad(mI, mK));
197     return db;
198   }
199 
200   /**
201    * Compute the Born chain-rule term for the polarization energy.
202    *
203    * @param mI     The polarizable multipole of atom i.
204    * @param mK     The polarizable multipole of atom k.
205    * @param mutual If true, compute the mutual polarization contribution.
206    * @return The Born chain-rule term.
207    */
208   public DoubleVector polarizationEnergyBornGrad(PolarizableMultipoleSIMD mI, PolarizableMultipoleSIMD mK, boolean mutual) {
209     // Compute the GK polarization Born chain-rule term.
210     DoubleVector db = gkMonopole.polarizationEnergyBornGrad(mI, mK);
211     db = db.add(gkDipole.polarizationEnergyBornGrad(mI, mK));
212     db = db.add(gkQuadrupole.polarizationEnergyBornGrad(mI, mK));
213     // Add the mutual polarization contribution to Born chain-rule term.
214     if (mutual) {
215       db = db.add(gkDipole.mutualPolarizationEnergyBornGrad(mI, mK));
216     }
217     return db;
218   }
219 
220 }