View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.numerics.multipole;
39  
40  import static ffx.numerics.multipole.EwaldTensorGlobal.fillEwaldSource;
41  import static ffx.numerics.multipole.EwaldTensorGlobal.initEwaldSource;
42  
43  /**
44   * The EwaldTensorQI class computes derivatives of erfc(<b>r</b>)/|<b>r</b>| via recursion to
45   * arbitrary order for Cartesian multipoles in a quasi-internal frame.
46   *
47   * @author Michael J. Schnieders
48   * @see <a href="http://doi.org/10.1142/9789812830364_0002" target="_blank"> Matt Challacombe, Eric
49   * Schwegler and Jan Almlof, Modern developments in Hartree-Fock theory: Fast methods for
50   * computing the Coulomb matrix. Computational Chemistry: Review of Current Trends. pp. 53-107,
51   * Ed. J. Leczszynski, World Scientifc, 1996. </a>
52   * @since 1.0
53   */
54  public class EwaldTensorQI extends CoulombTensorQI {
55  
56    /**
57     * These are the "source" terms for the recursion for the screened Coulomb operator erfc(R)/R.
58     */
59    private final double[] ewaldSource;
60  
61    /**
62     * The Ewald convergence parameter.
63     */
64    private final double beta;
65  
66    /**
67     * Constructor for EwaldTensorQI.
68     *
69     * @param order Tensor order.
70     * @param beta  The Ewald convergence parameter.
71     */
72    public EwaldTensorQI(int order, double beta) {
73      super(order);
74      this.beta = beta;
75      operator = Operator.SCREENED_COULOMB;
76  
77      // Auxiliary terms for screened Coulomb (Sagui et al. Eq. 2.28)
78      ewaldSource = new double[o1];
79      initEwaldSource(order, beta, ewaldSource);
80    }
81  
82    /**
83     * Generate source terms for the Ewald Challacombe et al. recursion.
84     *
85     * @param T000 Location to store the source terms.
86     */
87    @Override
88    protected void source(double[] T000) {
89      // Generate source terms for real space Ewald summation.
90      if (beta > 0.0) {
91        fillEwaldSource(order, beta, ewaldSource, R, T000);
92      } else {
93        // For beta = 0, generate tensors for the Coulomb operator.
94        super.source(T000);
95      }
96    }
97  
98  }