1 // ****************************************************************************** 2 // 3 // Title: Force Field X. 4 // Description: Force Field X - Software for Molecular Biophysics. 5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025. 6 // 7 // This file is part of Force Field X. 8 // 9 // Force Field X is free software; you can redistribute it and/or modify it 10 // under the terms of the GNU General Public License version 3 as published by 11 // the Free Software Foundation. 12 // 13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT 14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 16 // details. 17 // 18 // You should have received a copy of the GNU General Public License along with 19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple 20 // Place, Suite 330, Boston, MA 02111-1307 USA 21 // 22 // Linking this library statically or dynamically with other modules is making a 23 // combined work based on this library. Thus, the terms and conditions of the 24 // GNU General Public License cover the whole combination. 25 // 26 // As a special exception, the copyright holders of this library give you 27 // permission to link this library with independent modules to produce an 28 // executable, regardless of the license terms of these independent modules, and 29 // to copy and distribute the resulting executable under terms of your choice, 30 // provided that you also meet, for each linked independent module, the terms 31 // and conditions of the license of that module. An independent module is a 32 // module which is not derived from or based on this library. If you modify this 33 // library, you may extend this exception to your version of the library, but 34 // you are not obligated to do so. If you do not wish to do so, delete this 35 // exception statement from your version. 36 // 37 // ****************************************************************************** 38 package ffx.numerics.multipole; 39 40 import static ffx.numerics.special.Erf.erfc; 41 import static java.lang.Math.PI; 42 import static org.apache.commons.math3.util.FastMath.exp; 43 import static org.apache.commons.math3.util.FastMath.pow; 44 import static org.apache.commons.math3.util.FastMath.sqrt; 45 46 /** 47 * The EwaldMultipoleTensorGlobal class computes derivatives of erfc(<b>r</b>)/|<b>r</b>| via 48 * recursion to arbitrary order for Cartesian multipoles in the global frame. 49 * 50 * @author Michael J. Schnieders 51 * @see <a href="http://doi.org/10.1142/9789812830364_0002" target="_blank"> Matt Challacombe, Eric 52 * Schwegler and Jan Almlof, Modern developments in Hartree-Fock theory: Fast methods for 53 * computing the Coulomb matrix. Computational Chemistry: Review of Current Trends. pp. 53-107, 54 * Ed. J. Leczszynski, World Scientifc, 1996. </a> 55 * @since 1.0 56 */ 57 public class EwaldTensorGlobal extends CoulombTensorGlobal { 58 59 /** 60 * Constant <code>sqrtPI = sqrt(PI)</code> 61 */ 62 private static final double sqrtPI = sqrt(PI); 63 64 /** 65 * These are the "source" terms for the recursion for the screened Coulomb operator erfc(R)/R. 66 */ 67 private final double[] ewaldSource; 68 69 /** 70 * The Ewald convergence parameter. 71 */ 72 private final double beta; 73 74 /** 75 * Constructor for EwaldMultipoleTensorGlobal. 76 * 77 * @param order Tensor order. 78 * @param beta The Ewald convergence parameter. 79 */ 80 public EwaldTensorGlobal(int order, double beta) { 81 super(order); 82 this.beta = beta; 83 operator = Operator.SCREENED_COULOMB; 84 85 // Auxiliary terms for screened Coulomb (Sagui et al. Eq. 2.28) 86 ewaldSource = new double[o1]; 87 initEwaldSource(order, beta, ewaldSource); 88 } 89 90 /** 91 * Initialize the Ewald source terms. 92 * 93 * @param order Tensor order. 94 * @param beta The Ewald convergence parameter. 95 * @param ewaldSource Location to store the source terms. 96 * @return The source terms. 97 */ 98 protected static double[] initEwaldSource(int order, double beta, double[] ewaldSource) { 99 double prefactor = 2.0 * beta / sqrtPI; 100 double twoBeta2 = -2.0 * beta * beta; 101 for (int n = 0; n <= order; n++) { 102 ewaldSource[n] = prefactor * pow(twoBeta2, n); 103 } 104 return ewaldSource; 105 } 106 107 /** 108 * Generate source terms for the Ewald Challacombe et al. recursion. 109 * 110 * @param T000 Location to store the source terms. 111 */ 112 @Override 113 protected void source(double[] T000) { 114 // Generate source terms for real space Ewald summation. 115 if (beta > 0.0) { 116 fillEwaldSource(order, beta, ewaldSource, R, T000); 117 } else { 118 // For beta = 0, generate tensors for the Coulomb operator. 119 super.source(T000); 120 } 121 } 122 123 /** 124 * Fill the Ewald source terms. 125 * 126 * @param order The order plus one. 127 * @param beta The Ewald convergence parameter. 128 * @param ewaldSource The source terms. 129 * @param R The separation distance. 130 * @param T000 The location to store the source terms. 131 */ 132 protected static void fillEwaldSource(int order, double beta, double[] ewaldSource, double R, double[] T000) { 133 // Sagui et al. Eq. 2.22 134 double betaR = beta * R; 135 double betaR2 = betaR * betaR; 136 double iBetaR2 = 1.0 / (2.0 * betaR2); 137 double expBR2 = exp(-betaR2); 138 // Fnc(x^2) = Sqrt(PI) * erfc(x) / (2*x) 139 // where x = Beta*R 140 double Fnc = sqrtPI * erfc(betaR) / (2.0 * betaR); 141 for (int n = 0; n <= order; n++) { 142 T000[n] = ewaldSource[n] * Fnc; 143 // Generate F(n+1)c from Fnc (Eq. 2.24 in Sagui et al.) 144 // F(n+1)c = [(2*n+1) Fnc(x) + exp(-x)] / 2x 145 // where x = (Beta*R)^2 146 Fnc = ((2.0 * n + 1.0) * Fnc + expBR2) * iBetaR2; 147 } 148 } 149 150 }