1 // ****************************************************************************** 2 // 3 // Title: Force Field X. 4 // Description: Force Field X - Software for Molecular Biophysics. 5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025. 6 // 7 // This file is part of Force Field X. 8 // 9 // Force Field X is free software; you can redistribute it and/or modify it 10 // under the terms of the GNU General Public License version 3 as published by 11 // the Free Software Foundation. 12 // 13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT 14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 16 // details. 17 // 18 // You should have received a copy of the GNU General Public License along with 19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple 20 // Place, Suite 330, Boston, MA 02111-1307 USA 21 // 22 // Linking this library statically or dynamically with other modules is making a 23 // combined work based on this library. Thus, the terms and conditions of the 24 // GNU General Public License cover the whole combination. 25 // 26 // As a special exception, the copyright holders of this library give you 27 // permission to link this library with independent modules to produce an 28 // executable, regardless of the license terms of these independent modules, and 29 // to copy and distribute the resulting executable under terms of your choice, 30 // provided that you also meet, for each linked independent module, the terms 31 // and conditions of the license of that module. An independent module is a 32 // module which is not derived from or based on this library. If you modify this 33 // library, you may extend this exception to your version of the library, but 34 // you are not obligated to do so. If you do not wish to do so, delete this 35 // exception statement from your version. 36 // 37 // ****************************************************************************** 38 package ffx.numerics.fft; 39 40 import jdk.incubator.vector.DoubleVector; 41 import jdk.incubator.vector.VectorShuffle; 42 import jdk.incubator.vector.VectorSpecies; 43 44 import static java.lang.Math.fma; 45 46 /** 47 * Mixed radix factor is extended by the pass classes to apply the mixed radix factor. 48 */ 49 public abstract class MixedRadixFactor { 50 51 private static final double[] negateReal = {-1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0}; 52 private static final int[] shuffleMask = {1, 0, 3, 2, 5, 4, 7, 6}; 53 54 /** 55 * The preferred vector species for double precision. 56 */ 57 protected static final VectorSpecies<Double> DOUBLE_SPECIES = DoubleVector.SPECIES_PREFERRED; 58 /** 59 * Vector used to change the sign of the imaginary members of the vector via multiplication. 60 */ 61 protected static final DoubleVector NEGATE_IM; 62 /** 63 * Vector used to change the sign of the real members of the vector via multiplication. 64 */ 65 protected static final DoubleVector NEGATE_RE; 66 /** 67 * Shuffle used to swap real and imaginary members of the vector. 68 */ 69 protected static final VectorShuffle<Double> SHUFFLE_RE_IM; 70 /** 71 * The number of contiguous elements that will be read from the input data array. 72 */ 73 protected static final int LENGTH = DOUBLE_SPECIES.length(); 74 /** 75 * The number of complex elements that will be processed in each inner loop iteration. 76 * The number of elements to process in the inner loop must be evenly divisible by this loop increment. 77 */ 78 protected static final int LOOP = LENGTH / 2; 79 /** 80 * The number of complex elements that will be processed in each inner loop iteration. 81 * The number of elements to process in the inner loop must be evenly divisible by this loop increment. 82 */ 83 protected static final int BLOCK_LOOP = LENGTH; 84 85 /** 86 * Vector used to change the sign of the imaginary members of the vector via multiplication. 87 */ 88 protected static final DoubleVector NEGATE_IM_128; 89 /** 90 * Vector used to change the sign of the real members of the vector via multiplication. 91 */ 92 protected static final DoubleVector NEGATE_RE_128; 93 /** 94 * Shuffle used to swap real and imaginary members of the vector. 95 */ 96 protected static final VectorShuffle<Double> SHUFFLE_RE_IM_128; 97 /** 98 * The number of contiguous elements that will be read from the input data array. 99 */ 100 protected static final int LENGTH_128 = DoubleVector.SPECIES_128.length(); 101 /** 102 * The number of complex elements that will be processed in each inner loop iteration. 103 * The number of elements to process in the inner loop must be evenly divisible by this loop increment. 104 */ 105 protected static final int LOOP_128 = LENGTH_128 / 2; 106 /** 107 * The number of complex elements that will be processed in each inner loop iteration. 108 * The number of elements to process in the inner loop must be evenly divisible by this loop increment. 109 */ 110 protected static final int BLOCK_LOOP_128 = LENGTH_128; 111 112 /** 113 * Vector used to change the sign of the imaginary members of the vector via multiplication. 114 */ 115 protected static final DoubleVector NEGATE_IM_256; 116 /** 117 * Vector used to change the sign of the real members of the vector via multiplication. 118 */ 119 protected static final DoubleVector NEGATE_RE_256; 120 /** 121 * Shuffle used to swap real and imaginary members of the vector. 122 */ 123 protected static final VectorShuffle<Double> SHUFFLE_RE_IM_256; 124 /** 125 * The number of contiguous elements that will be read from the input data array. 126 */ 127 protected static final int LENGTH_256 = DoubleVector.SPECIES_256.length(); 128 /** 129 * The number of complex elements that will be processed in each inner loop iteration. 130 * The number of elements to process in the inner loop must be evenly divisible by this loop increment. 131 */ 132 protected static final int LOOP_256 = LENGTH_256 / 2; 133 /** 134 * The number of complex elements that will be processed in each inner loop iteration. 135 * The number of elements to process in the inner loop must be evenly divisible by this loop increment. 136 */ 137 protected static final int BLOCK_LOOP_256 = LENGTH_256; 138 139 /** 140 * Vector used to change the sign of the imaginary members of the vector via multiplication. 141 */ 142 protected static final DoubleVector NEGATE_IM_512; 143 /** 144 * Vector used to change the sign of the real members of the vector via multiplication. 145 */ 146 protected static final DoubleVector NEGATE_RE_512; 147 /** 148 * Shuffle used to swap real and imaginary members of the vector. 149 */ 150 protected static final VectorShuffle<Double> SHUFFLE_RE_IM_512; 151 /** 152 * The number of contiguous elements that will be read from the input data array. 153 */ 154 protected static final int LENGTH_512 = DoubleVector.SPECIES_512.length(); 155 /** 156 * The number of complex elements that will be processed in each inner loop iteration. 157 * The number of elements to process in the inner loop must be evenly divisible by this loop increment. 158 */ 159 protected static final int LOOP_512 = LENGTH_512 / 2; 160 /** 161 * The number of complex elements that will be processed in each inner loop iteration. 162 * The number of elements to process in the inner loop must be evenly divisible by this loop increment. 163 */ 164 protected static final int BLOCK_LOOP_512 = LENGTH_512; 165 166 static { 167 // Assume that 512 is the largest vector size. 168 if (LENGTH > 8) { 169 throw new IllegalStateException("Unsupported SIMD vector size: " + LENGTH); 170 } 171 172 NEGATE_RE_128 = DoubleVector.fromArray(DoubleVector.SPECIES_128, negateReal, 0); 173 NEGATE_IM_128 = NEGATE_RE_128.mul(-1.0); 174 SHUFFLE_RE_IM_128 = VectorShuffle.fromArray(DoubleVector.SPECIES_128, shuffleMask, 0); 175 176 NEGATE_RE_256 = DoubleVector.fromArray(DoubleVector.SPECIES_256, negateReal, 0); 177 NEGATE_IM_256 = NEGATE_RE_256.mul(-1.0); 178 SHUFFLE_RE_IM_256 = VectorShuffle.fromArray(DoubleVector.SPECIES_256, shuffleMask, 0); 179 180 NEGATE_RE_512 = DoubleVector.fromArray(DoubleVector.SPECIES_512, negateReal, 0); 181 NEGATE_IM_512 = NEGATE_RE_512.mul(-1.0); 182 SHUFFLE_RE_IM_512 = VectorShuffle.fromArray(DoubleVector.SPECIES_512, shuffleMask, 0); 183 184 switch (LENGTH) { 185 case 2: 186 NEGATE_RE = NEGATE_RE_128; 187 NEGATE_IM = NEGATE_IM_128; 188 SHUFFLE_RE_IM = SHUFFLE_RE_IM_128; 189 break; 190 case 4: 191 NEGATE_RE = NEGATE_RE_256; 192 NEGATE_IM = NEGATE_IM_256; 193 SHUFFLE_RE_IM = SHUFFLE_RE_IM_256; 194 break; 195 case 8: 196 NEGATE_RE = NEGATE_RE_512; 197 NEGATE_IM = NEGATE_IM_512; 198 SHUFFLE_RE_IM = SHUFFLE_RE_IM_512; 199 break; 200 default: 201 throw new IllegalStateException("Unsupported SIMD DoubleVector size: " + LENGTH); 202 } 203 } 204 205 /** 206 * The size of the input. 207 */ 208 protected final int n; 209 /** 210 * The number of FFTs to process (default = 1). 211 */ 212 protected final int nFFTs; 213 /** 214 * The imaginary offset. 215 */ 216 protected final int im; 217 /** 218 * The mixed radix factor. 219 */ 220 protected final int factor; 221 /** 222 * The product of all factors applied so far. 223 */ 224 protected final int product; 225 /** 226 * The outer loop limit (n / product). 227 */ 228 protected final int outerLoopLimit; 229 /** 230 * The inner loop limit (product / factor). 231 */ 232 protected final int innerLoopLimit; 233 /** 234 * The next input (n / factor). 235 * This is the separation between the input data for each pass. 236 */ 237 protected final int nextInput; 238 /** 239 * Equal to 2 * nextInput for interleaved complex data. 240 * Equal to nextInput for separate real and imaginary arrays. 241 */ 242 protected final int di; 243 /** 244 * Equal to 2 * innerLoopLimit for interleaved complex data. 245 * Equal to innerLoopLimit for separate real and imaginary arrays. 246 */ 247 protected final int dj; 248 /** 249 * The twiddle factors for this pass. 250 */ 251 protected final double[][] twiddles; 252 /** 253 * The increment for input data within the inner loop. 254 * This is equal to 2 for interleaved complex data. 255 * This is equal to 1 for separate real and imaginary arrays. 256 */ 257 protected final int ii; 258 /** 259 * Increment for the inner loop. 260 */ 261 protected final int jstep; 262 263 /** 264 * Constructor for the mixed radix factor. 265 * 266 * @param passConstants the pass constants. 267 */ 268 public MixedRadixFactor(PassConstants passConstants) { 269 n = passConstants.n(); 270 nFFTs = passConstants.nFFTs(); 271 im = passConstants.im(); 272 factor = passConstants.factor(); 273 product = passConstants.product(); 274 twiddles = passConstants.twiddles(); 275 outerLoopLimit = n / product; 276 innerLoopLimit = (product / factor) * nFFTs; 277 nextInput = (n / factor) * nFFTs; 278 if (im == 1) { 279 ii = 2; 280 // For interleaved complex data, the di and dj offsets are doubled. 281 di = 2 * nextInput; 282 dj = 2 * innerLoopLimit; 283 } else { 284 ii = 1; 285 // For separate real and imaginary arrays, the di and dj offsets 286 // are the same as the next input and inner loop limit. 287 di = nextInput; 288 dj = innerLoopLimit; 289 } 290 jstep = (factor - 1) * dj; 291 } 292 293 /** 294 * Return a string representation of the mixed radix factor. 295 * 296 * @return a string representation of the mixed radix factor. 297 */ 298 public String toString() { 299 return "MixedRadixFactor {" + 300 "n=" + n + 301 ", nFFTs=" + nFFTs + 302 ", im=" + im + 303 ", factor=" + factor + 304 ", product=" + product + 305 ", outerLoopLimit=" + outerLoopLimit + 306 ", innerLoopLimit=" + innerLoopLimit + 307 ", nextInput=" + nextInput + 308 ", di=" + di + 309 ", dj=" + dj + 310 ", ii=" + ii + 311 ", jstep=" + jstep + 312 '}'; 313 } 314 315 /** 316 * Apply the mixed radix factor using scalar operations. 317 * 318 * @param passData the pass data. 319 */ 320 protected abstract void passScalar(PassData passData); 321 322 /** 323 * Apply the mixed radix factor using SIMD operations. 324 * 325 * @param passData the pass data. 326 */ 327 protected abstract void passSIMD(PassData passData); 328 329 /** 330 * Multiply two complex numbers [x_r, x_i] and [w_r, w_i] and store the result. 331 * 332 * @param x_r the real part of the complex number. 333 * @param x_i the imaginary part of the complex number. 334 * @param w_r the real part of the twiddle factor. 335 * @param w_i the imaginary part of the twiddle factor. 336 * @param ret the array to store the result. 337 * @param re the real part index in the result array. 338 * @param im the imaginary part index in the result array. 339 */ 340 protected static void multiplyAndStore(double x_r, double x_i, double w_r, double w_i, double[] ret, int re, int im) { 341 ret[re] = fma(w_r, x_r, -w_i * x_i); 342 ret[im] = fma(w_r, x_i, w_i * x_r); 343 } 344 }