1 // ******************************************************************************
2 //
3 // Title: Force Field X.
4 // Description: Force Field X - Software for Molecular Biophysics.
5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025.
6 //
7 // This file is part of Force Field X.
8 //
9 // Force Field X is free software; you can redistribute it and/or modify it
10 // under the terms of the GNU General Public License version 3 as published by
11 // the Free Software Foundation.
12 //
13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 // details.
17 //
18 // You should have received a copy of the GNU General Public License along with
19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20 // Place, Suite 330, Boston, MA 02111-1307 USA
21 //
22 // Linking this library statically or dynamically with other modules is making a
23 // combined work based on this library. Thus, the terms and conditions of the
24 // GNU General Public License cover the whole combination.
25 //
26 // As a special exception, the copyright holders of this library give you
27 // permission to link this library with independent modules to produce an
28 // executable, regardless of the license terms of these independent modules, and
29 // to copy and distribute the resulting executable under terms of your choice,
30 // provided that you also meet, for each linked independent module, the terms
31 // and conditions of the license of that module. An independent module is a
32 // module which is not derived from or based on this library. If you modify this
33 // library, you may extend this exception to your version of the library, but
34 // you are not obligated to do so. If you do not wish to do so, delete this
35 // exception statement from your version.
36 //
37 // ******************************************************************************
38 package ffx.numerics;
39
40 import javax.annotation.Nullable;
41 import java.util.Collections;
42 import java.util.List;
43
44 /**
45 * The OptimizationInterface defines methods required by an optimizer.
46 *
47 * @author Michael J. Schnieders
48 * @since 1.0
49 */
50 public interface OptimizationInterface {
51
52 /**
53 * Destroys this Potential and frees up any associated resources, particularly worker Threads.
54 * Default implementation is to return true (assume destruction successful).
55 *
56 * @return If resource reclamation successful, or resources already reclaimed.
57 */
58 default boolean destroy() {
59 return true;
60 }
61
62 /**
63 * This method is called repeatedly to compute the function energy.
64 *
65 * @param x Input parameters.
66 * @return Function value at <code>x</code>.
67 * @since 1.0
68 */
69 double energy(double[] x);
70
71 /**
72 * This method is called repeatedly to compute the function energy. The verbose flag may not be
73 * used by all implementations.
74 *
75 * @param x Input parameters.
76 * @param verbose Display extra information.
77 * @return Function value at <code>x</code>
78 */
79 default double energy(double[] x, boolean verbose) {
80 return energy(x);
81 }
82
83 /**
84 * This method is called repeatedly to compute the function energy and gradient.
85 *
86 * @param x Input parameters.
87 * @param g Output gradients with respect to each parameter.
88 * @return Function value at <code>x</code>.
89 * @since 1.0
90 */
91 double energyAndGradient(double[] x, double[] g);
92
93 /**
94 * This method is called repeatedly to compute the function energy and gradient. The verbose flag
95 * may not be used by all implementations.
96 *
97 * @param x Input parameters.
98 * @param g Output gradients with respect to each parameter.
99 * @param verbose Display extra information.
100 * @return Function value at <code>x</code>.
101 * @since 1.0
102 */
103 default double energyAndGradient(double[] x, double[] g, boolean verbose) {
104 return energyAndGradient(x, g);
105 }
106
107 /**
108 * Load the current value of the parameters. If the supplied array is null or not large enough, a
109 * new one should be created. The filled array is returned.
110 *
111 * @param parameters Supplied array.
112 * @return The array filled with parameter values.
113 */
114 double[] getCoordinates(double[] parameters);
115
116 /**
117 * Set the current value of the parameters. If the supplied array is null or not large enough,
118 * no action is taken.
119 *
120 * @param parameters The array with parameter values.
121 */
122 void setCoordinates(double[] parameters);
123
124 /**
125 * Get the number of variables being operated on.
126 *
127 * @return Number of variables.
128 */
129 int getNumberOfVariables();
130
131 /**
132 * Get the problem scaling.
133 *
134 * @return The scaling value used for each variable.
135 * @since 1.0
136 */
137 double[] getScaling();
138
139 /**
140 * Scale the problem. A good choice for optimization is the square root of the median eigenvalue of
141 * a typical Hessian.
142 *
143 * @param scaling The scaling value to use for each variable.
144 * @since 1.0
145 */
146 void setScaling(@Nullable double[] scaling);
147
148 /**
149 * Get the total energy of the system
150 *
151 * @return the total energy
152 */
153 double getTotalEnergy();
154
155 /**
156 * Returns a List of Potentials this Potential depends on with a recursive search, excluding the
157 * top level of this call. May not be implemented for all Potentials.
158 *
159 * @return By default, an empty list.
160 */
161 default List<Potential> getUnderlyingPotentials() {
162 return Collections.emptyList();
163 }
164
165 /**
166 * Default method to scale coordinates.
167 *
168 * @param x Input parameters.
169 */
170 default void scaleCoordinates(double[] x) {
171 double[] scaling = getScaling();
172 if (scaling != null) {
173 int nParams = x.length;
174 for (int i = 0; i < nParams; i++) {
175 x[i] *= scaling[i];
176 }
177 }
178 }
179
180 /**
181 * Default method to unscale coordinates.
182 *
183 * @param x Input parameters.
184 * @param g Gradient array.
185 */
186 default void scaleCoordinatesAndGradient(double[] x, double[] g) {
187 double[] scaling = getScaling();
188 if (scaling != null) {
189 int len = x.length;
190 for (int i = 0; i < len; i++) {
191 x[i] *= scaling[i];
192 g[i] /= scaling[i];
193 }
194 }
195 }
196
197 /**
198 * Default method to unscale coordinates.
199 *
200 * @param x Input parameters.
201 */
202 default void unscaleCoordinates(double[] x) {
203 double[] scaling = getScaling();
204 if (scaling != null) {
205 int nParams = x.length;
206 for (int i = 0; i < nParams; i++) {
207 x[i] /= scaling[i];
208 }
209 }
210 }
211 }