1 // ****************************************************************************** 2 // 3 // Title: Force Field X. 4 // Description: Force Field X - Software for Molecular Biophysics. 5 // Copyright: Copyright (c) Michael J. Schnieders 2001-2025. 6 // 7 // This file is part of Force Field X. 8 // 9 // Force Field X is free software; you can redistribute it and/or modify it 10 // under the terms of the GNU General Public License version 3 as published by 11 // the Free Software Foundation. 12 // 13 // Force Field X is distributed in the hope that it will be useful, but WITHOUT 14 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 15 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 16 // details. 17 // 18 // You should have received a copy of the GNU General Public License along with 19 // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple 20 // Place, Suite 330, Boston, MA 02111-1307 USA 21 // 22 // Linking this library statically or dynamically with other modules is making a 23 // combined work based on this library. Thus, the terms and conditions of the 24 // GNU General Public License cover the whole combination. 25 // 26 // As a special exception, the copyright holders of this library give you 27 // permission to link this library with independent modules to produce an 28 // executable, regardless of the license terms of these independent modules, and 29 // to copy and distribute the resulting executable under terms of your choice, 30 // provided that you also meet, for each linked independent module, the terms 31 // and conditions of the license of that module. An independent module is a 32 // module which is not derived from or based on this library. If you modify this 33 // library, you may extend this exception to your version of the library, but 34 // you are not obligated to do so. If you do not wish to do so, delete this 35 // exception statement from your version. 36 // 37 // ****************************************************************************** 38 package ffx.numerics; 39 40 import java.util.Collections; 41 import java.util.List; 42 43 /** 44 * The OptimizationInterface defines methods required by an optimizer. 45 * 46 * @author Michael J. Schnieders 47 * @since 1.0 48 */ 49 public interface OptimizationInterface { 50 51 /** 52 * Destroys this Potential and frees up any associated resources, particularly worker Threads. 53 * Default implementation is to return true (assume destruction successful). 54 * 55 * @return If resource reclamation successful, or resources already reclaimed. 56 */ 57 default boolean destroy() { 58 return true; 59 } 60 61 /** 62 * This method is called repeatedly to compute the function energy. 63 * 64 * @param x Input parameters. 65 * @return Function value at <code>x</code>. 66 * @since 1.0 67 */ 68 double energy(double[] x); 69 70 /** 71 * This method is called repeatedly to compute the function energy. The verbose flag may not be 72 * used by all implementations. 73 * 74 * @param x Input parameters. 75 * @param verbose Display extra information. 76 * @return Function value at <code>x</code> 77 */ 78 default double energy(double[] x, boolean verbose) { 79 return energy(x); 80 } 81 82 /** 83 * This method is called repeatedly to compute the function energy and gradient. 84 * 85 * @param x Input parameters. 86 * @param g Output gradients with respect to each parameter. 87 * @return Function value at <code>x</code>. 88 * @since 1.0 89 */ 90 double energyAndGradient(double[] x, double[] g); 91 92 /** 93 * This method is called repeatedly to compute the function energy and gradient. The verbose flag 94 * may not be used by all implementations. 95 * 96 * @param x Input parameters. 97 * @param g Output gradients with respect to each parameter. 98 * @param verbose Display extra information. 99 * @return Function value at <code>x</code>. 100 * @since 1.0 101 */ 102 default double energyAndGradient(double[] x, double[] g, boolean verbose) { 103 return energyAndGradient(x, g); 104 } 105 106 /** 107 * Load the current value of the parameters. If the supplied array is null or not large enough, a 108 * new one should be created. The filled array is returned. 109 * 110 * @param parameters Supplied array. 111 * @return The array filled with parameter values. 112 */ 113 double[] getCoordinates(double[] parameters); 114 115 /** 116 * Set the current value of the parameters. If the supplied array is null or not large enough, 117 * no action is taken. 118 * 119 * @param parameters The array with parameter values. 120 */ 121 void setCoordinates(double[] parameters); 122 123 /** 124 * Get the number of variables being operated on. 125 * 126 * @return Number of variables. 127 */ 128 int getNumberOfVariables(); 129 130 /** 131 * Get the problem scaling. 132 * 133 * @return The scaling value used for each variable. 134 * @since 1.0 135 */ 136 double[] getScaling(); 137 138 /** 139 * Scale the problem. A good choice for optimization is the square root of the median eigenvalue of 140 * a typical Hessian. 141 * 142 * @param scaling The scaling value to use for each variable. 143 * @since 1.0 144 */ 145 void setScaling(double[] scaling); 146 147 /** 148 * Get the total energy of the system 149 * 150 * @return the total energy 151 */ 152 double getTotalEnergy(); 153 154 /** 155 * Returns a List of Potentials this Potential depends on with a recursive search, excluding the 156 * top level of this call. May not be implemented for all Potentials. 157 * 158 * @return By default, an empty list. 159 */ 160 default List<Potential> getUnderlyingPotentials() { 161 return Collections.emptyList(); 162 } 163 164 /** 165 * Default method to scale coordinates. 166 * 167 * @param x Input parameters. 168 */ 169 default void scaleCoordinates(double[] x) { 170 double[] scaling = getScaling(); 171 if (scaling != null) { 172 int nParams = x.length; 173 for (int i = 0; i < nParams; i++) { 174 x[i] *= scaling[i]; 175 } 176 } 177 } 178 179 /** 180 * Default method to unscale coordinates. 181 * 182 * @param x Input parameters. 183 * @param g Gradient array. 184 */ 185 default void scaleCoordinatesAndGradient(double[] x, double[] g) { 186 double[] scaling = getScaling(); 187 if (scaling != null) { 188 int len = x.length; 189 for (int i = 0; i < len; i++) { 190 x[i] *= scaling[i]; 191 g[i] /= scaling[i]; 192 } 193 } 194 } 195 196 /** 197 * Default method to unscale coordinates. 198 * 199 * @param x Input parameters. 200 */ 201 default void unscaleCoordinates(double[] x) { 202 double[] scaling = getScaling(); 203 if (scaling != null) { 204 int nParams = x.length; 205 for (int i = 0; i < nParams; i++) { 206 x[i] /= scaling[i]; 207 } 208 } 209 } 210 }