View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.algorithms.dynamics.thermostats;
39  
40  import ffx.numerics.Constraint;
41  import ffx.numerics.Potential.VARIABLE_TYPE;
42  import ffx.potential.SystemState;
43  
44  import java.util.Collections;
45  import java.util.List;
46  import java.util.Random;
47  
48  import static java.lang.String.format;
49  import static org.apache.commons.math3.util.FastMath.exp;
50  import static org.apache.commons.math3.util.FastMath.sqrt;
51  
52  /**
53   * Thermostat a molecular dynamics trajectory to an external bath using the Bussi, Donadio, and
54   * Parrinello method. This method is similar to Berendsen thermostat, but generates a canonical
55   * distribution.
56   *
57   * @author Michael J. Schnieders
58   * @see <a href="http://dx.doi.org/10.1016/j.cpc.2008.01.006">G. Bussi and M. Parrinello,
59   *     "Stochastic Thermostats: Comparison of Local and Global Schemes", Computer Physics
60   *     Communications, 179, 26-29 (2008)</a>
61   * @since 1.0
62   */
63  public class Bussi extends Thermostat {
64  
65    /** The random number generator used to perturb velocities. */
66    private final Random bussiRandom;
67    /** Bussi thermostat time constant (psec). */
68    private double tau;
69  
70    /**
71     * Constructor for Bussi.
72     *
73     * @param state The MDState to operate on.
74     * @param type the VARIABLE_TYPE of each variable.
75     * @param targetTemperature The target temperature.
76     * @param tau Bussi thermostat time constant (psec).
77     */
78    public Bussi(SystemState state, VARIABLE_TYPE[] type, double targetTemperature, double tau) {
79      this(state, type, targetTemperature, tau, Collections.emptyList());
80    }
81  
82    public Bussi(SystemState state, VARIABLE_TYPE[] type, double targetTemperature, double tau,
83        List<Constraint> constraints) {
84      super(state, type, targetTemperature, constraints);
85      this.name = ThermostatEnum.BUSSI;
86      this.tau = tau;
87      this.bussiRandom = new Random();
88    }
89  
90    /**
91     * Constructor for Bussi.
92     *
93     * @param state The MDState to operate on.
94     * @param type the VARIABLE_TYPE of each variable.
95     * @param targetTemperature a double.
96     */
97    public Bussi(SystemState state, VARIABLE_TYPE[] type, double targetTemperature) {
98      this(state, type, targetTemperature, 0.2e0);
99    }
100 
101   /**
102    * {@inheritDoc}
103    *
104    * <p>Full step velocity modification.
105    */
106   @Override
107   public void fullStep(double dt) {
108     double expTau = exp(-dt / tau);
109     double tempRatio = targetTemperature / state.getTemperature();
110     double rate = (1.0 - expTau) * tempRatio / degreesOfFreedom;
111     double r = bussiRandom.nextGaussian();
112     double s = 0.0;
113     for (int i = 0; i < degreesOfFreedom - 1; i++) {
114       double si = bussiRandom.nextGaussian();
115       s += si * si;
116     }
117     double scale = expTau + (s + r * r) * rate + 2.0 * r * sqrt(expTau * rate);
118     scale = sqrt(scale);
119     if (r + sqrt(expTau / rate) < 0.0) {
120       scale = -scale;
121     }
122     double[] v = state.v();
123     double[] mass = state.getMass();
124     for (int i = 0; i < state.getNumberOfVariables(); i++) {
125       if (mass[i] > 0.0) {
126         v[i] *= scale;
127       }
128     }
129   }
130 
131   /**
132    * Getter for the field <code>tau</code>.
133    *
134    * @return a double.
135    */
136   public double getTau() {
137     return tau;
138   }
139 
140   /**
141    * Setter for the field <code>tau</code>.
142    *
143    * @param tau a double.
144    */
145   public void setTau(double tau) {
146     this.tau = tau;
147   }
148 
149   /**
150    * {@inheritDoc}
151    *
152    * <p>No velocity modifications are made by the Bussi method at the half-step.
153    */
154   @Override
155   public void halfStep(double dt) {
156   }
157 
158   /**
159    * {@inheritDoc}
160    *
161    * <p>Initialize the Random number generator used to apply random forces to the particles.
162    */
163   public void setRandomSeed(long seed) {
164     bussiRandom.setSeed(seed);
165   }
166 
167   /**
168    * Add Thermostat details to the kinetic energy and temperature details.
169    *
170    * @return Description of the thermostat, kinetic energy and temperature.
171    */
172   public String toThermostatString() {
173     return format("\n Bussi Thermostat (tau = %8.3f psec)\n%s", tau, super.toString());
174   }
175 
176   /** {@inheritDoc} */
177   @Override
178   public String toString() {
179     return "Bussi";
180   }
181 }