View Javadoc
1   // ******************************************************************************
2   //
3   // Title:       Force Field X.
4   // Description: Force Field X - Software for Molecular Biophysics.
5   // Copyright:   Copyright (c) Michael J. Schnieders 2001-2025.
6   //
7   // This file is part of Force Field X.
8   //
9   // Force Field X is free software; you can redistribute it and/or modify it
10  // under the terms of the GNU General Public License version 3 as published by
11  // the Free Software Foundation.
12  //
13  // Force Field X is distributed in the hope that it will be useful, but WITHOUT
14  // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
15  // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16  // details.
17  //
18  // You should have received a copy of the GNU General Public License along with
19  // Force Field X; if not, write to the Free Software Foundation, Inc., 59 Temple
20  // Place, Suite 330, Boston, MA 02111-1307 USA
21  //
22  // Linking this library statically or dynamically with other modules is making a
23  // combined work based on this library. Thus, the terms and conditions of the
24  // GNU General Public License cover the whole combination.
25  //
26  // As a special exception, the copyright holders of this library give you
27  // permission to link this library with independent modules to produce an
28  // executable, regardless of the license terms of these independent modules, and
29  // to copy and distribute the resulting executable under terms of your choice,
30  // provided that you also meet, for each linked independent module, the terms
31  // and conditions of the license of that module. An independent module is a
32  // module which is not derived from or based on this library. If you modify this
33  // library, you may extend this exception to your version of the library, but
34  // you are not obligated to do so. If you do not wish to do so, delete this
35  // exception statement from your version.
36  //
37  // ******************************************************************************
38  package ffx.numerics.special;
39  
40  import ffx.utilities.FFXTest;
41  import org.junit.Assert;
42  import org.junit.Test;
43  import org.junit.runner.RunWith;
44  import org.junit.runners.Parameterized;
45  import org.junit.runners.Parameterized.Parameters;
46  
47  import java.util.Arrays;
48  import java.util.Collection;
49  
50  /**
51   * @author Michael J. Schnieders
52   */
53  @RunWith(Parameterized.class)
54  public class ErfTest extends FFXTest {
55  
56    /**
57     * Java double precision follows the IEEE 754 Binary Floating-Point Arithmetic standard. Each
58     * double consumes 8 bytes of storage and offers 52 binary digits of precision (14-15 decimal
59     * digits). This implementation of Erf passes for a tolerance of 1.0e-15 and (as one might expect)
60     * fails using 1.0e-16.
61     */
62    private static final double tolerance = 1.0e-15;
63  
64    private final String info;
65    private final double x;
66    private final double expected;
67  
68    public ErfTest(String info, double x, double expected) {
69      this.info = info;
70      this.x = x;
71      this.expected = expected;
72    }
73  
74    /**
75     * The expected values were found to 20 decimal points of precision using Mathematica:
76     * Erf[SetPrecision[x, 20]] Erfc[SetPrecision[x, 20]]
77     */
78    @Parameters
79    public static Collection<Object[]> data() {
80      return Arrays.asList(
81          new Object[][]{
82              {"Test 0.0", 0.0e0, 0.0e0},
83  
84              // Very small value tests
85              {"Test 1.0e-16; near xSmall threshold.", 1.0e-16, 1.128379167095513e-16},
86              {"Test 1.0e-10; small value.", 1.0e-10, 1.128379167095513e-10},
87  
88              {"Test 0.1; below the first branch point.", 0.1e0, 0.1124629160182849},
89              {"Test 0.46; just below first branch point.", 0.46, 0.4846553900016797},
90              {"Test 0.46875; at the first branch point.", 0.46875, 0.492613473217938},
91              {"Test 0.47; just above first branch point.", 0.47, 0.4937450508860821},
92              {"Test 1.0; between the branch points.", 1.0e0, 0.842700792949715},
93              {"Test 3.9; just below second branch point.", 3.9, 1.0 - 3.479224859723177e-8},
94              {"Test 4.0; at the second branch point.", 4.0, 1.0 - 1.5417257900280018852e-8},
95              {"Test 4.1; just above second branch point.", 4.1, 1.0 - 6.700027654084919e-9},
96              {"Test 5.0; above the second branch point.", 5.0e0, 1.0e0 - 1.5374597944280348502e-12},
97  
98              // Very large value tests
99              {"Test 10.0; large value.", 10.0e0, 1.0 - 2.088487583762545e-45},
100             {"Test 26.0; near xBig threshold.", 26.0, 1.0e0},
101 
102             // Negative value tests (erf is an odd function: erf(-x) = -erf(x))
103             {"Test -0.1; negative value below first branch point.", -0.1e0, -0.1124629160182849},
104             {"Test -1.0; negative value between branch points.", -1.0e0, -0.842700792949715},
105             {"Test -5.0; negative value above second branch point.", -5.0e0, -1.0e0 + 1.5374597944280348502e-12}
106         });
107   }
108 
109   /**
110    * Test of erf method, of class Erf.
111    */
112   @Test
113   public void testErf() {
114     double actual = Erf.erf(x);
115     Assert.assertEquals(info, expected, actual, tolerance);
116   }
117 
118   /**
119    * Test of erfc method, of class Erf.
120    */
121   @Test
122   public void testErfc() {
123     double actual = Erf.erfc(x);
124     Assert.assertEquals(info, 1.0 - expected, actual, tolerance);
125   }
126 
127   /**
128    * Test of erf method with special values.
129    */
130   @Test
131   public void testErfSpecialCases() {
132     // Test NaN - not using parameterized test to avoid issues with NaN comparison
133     double nanResult = Erf.erf(Double.NaN);
134     Assert.assertTrue("erf(NaN) should be NaN", Double.isNaN(nanResult));
135 
136     // Test positive infinity
137     double posInfResult = Erf.erf(Double.POSITIVE_INFINITY);
138     Assert.assertEquals("erf(+Infinity) should be 1.0", 1.0, posInfResult, 0.0);
139 
140     // Test negative infinity
141     double negInfResult = Erf.erf(Double.NEGATIVE_INFINITY);
142     Assert.assertEquals("erf(-Infinity) should be -1.0", -1.0, negInfResult, 0.0);
143   }
144 
145   /**
146    * Test of erfc method with special values.
147    */
148   @Test
149   public void testErfcSpecialCases() {
150     // Test NaN - not using parameterized test to avoid issues with NaN comparison
151     double nanResult = Erf.erfc(Double.NaN);
152     Assert.assertTrue("erfc(NaN) should be NaN", Double.isNaN(nanResult));
153 
154     // Test positive infinity
155     double posInfResult = Erf.erfc(Double.POSITIVE_INFINITY);
156     Assert.assertEquals("erfc(+Infinity) should be 0.0", 0.0, posInfResult, 0.0);
157 
158     // Test negative infinity
159     double negInfResult = Erf.erfc(Double.NEGATIVE_INFINITY);
160     Assert.assertEquals("erfc(-Infinity) should be 2.0", 2.0, negInfResult, 0.0);
161   }
162 
163 }