Package ffx.algorithms.mc
Class RosenbluthCBMC
java.lang.Object
ffx.algorithms.mc.RosenbluthCBMC
- All Implemented Interfaces:
MonteCarloListener
Conformational Biased Monte Carlo (applied to ALL torsions of a peptide side-chain).
This method is described by Frenkel/Smit in "Understanding Molecular Simulation" Chapters 13.2,13.3 This uses the "conformational biasing" method to select whole rotamer transformations that are frequently accepted.
- Author:
- Stephen D. LuCore
-
Constructor Summary
ConstructorsConstructorDescriptionRosenbluthCBMC(MolecularAssembly molecularAssembly, ForceFieldEnergy ffe, Thermostat thermostat, List<Residue> targets, int mcFrequency, int trialSetSize, boolean writeSnapshots) RRMC constructor. -
Method Summary
-
Constructor Details
-
RosenbluthCBMC
public RosenbluthCBMC(MolecularAssembly molecularAssembly, ForceFieldEnergy ffe, Thermostat thermostat, List<Residue> targets, int mcFrequency, int trialSetSize, boolean writeSnapshots) RRMC constructor.- Parameters:
molecularAssembly- aMolecularAssemblyobject.ffe- aForceFieldEnergyobject.thermostat- aThermostatobject.targets- Residues to undergo RRMC.mcFrequency- Number of MD steps between RRMC proposals.trialSetSize- Larger values cost more but increase acceptance.writeSnapshots- a boolean.
-
-
Method Details
-
cbmcStep
public boolean cbmcStep()cbmcStep.- Returns:
- a boolean.
-
controlStep
public boolean controlStep()controlStep.- Returns:
- a boolean.
-
mcUpdate
public boolean mcUpdate(double temperature) After a successful step or interval of an algorithm, this method of the listener will be called.Temperature argument is necessary since Potentials package cannot import Thermostat/MD.
- Specified by:
mcUpdatein interfaceMonteCarloListener- Parameters:
temperature- The Metropolis Monte Carlo temperature.- Returns:
- A return of
trueindicates the algorithm continues.
-