Package ffx.numerics.switching
Class PowerSwitch
java.lang.Object
ffx.numerics.switching.PowerSwitch
- All Implemented Interfaces:
UnivariateDiffFunction
,UnivariateSwitchingFunction
A PowerSwitch interpolates between 0 and 1 vi f(x) = (ax)^beta, where x must be between 0 and
1/a.
- Author:
- Jacob M. Litman, Michael J. Schnieders
-
Constructor Summary
ConstructorDescriptionDefault Constructor of the PowerSwitch: constructs a linear switch.PowerSwitch
(double a, double beta) Constructor of the PowerSwitch. -
Method Summary
Modifier and TypeMethodDescriptionboolean
Remains 0 below the lower bound, and 1 above the upper bound (i.e. a multiplicative switch).double
firstDerivative
(double x) First derivative at a point.double
Gets the value of beta in f(x) = (a*x)^betaint
The highest-order derivative that is zero at the bounds.double
Gets the value of a in f(x) = (a*x)^beta.double
Gets the one bound, where f(x) becomes one.double
Gets the zero bound, where f(x) becomes zero.int
Power switch derivatives can be zero at the zero bound if the exponent is greater than the derivative order.double
nthDerivative
(double x, int order) N'th order derivative at a point.double
secondDerivative
(double x) Second derivative at a point.boolean
True if f(lb + delta) + f(ub - delta) = 1 for all delta between 0 and (ub - lb).toString()
boolean
Remains in the range 0-1 outside the bounds.double
valueAt
(double x) Value at a point
-
Constructor Details
-
PowerSwitch
public PowerSwitch()Default Constructor of the PowerSwitch: constructs a linear switch. -
PowerSwitch
public PowerSwitch(double a, double beta) Constructor of the PowerSwitch.- Parameters:
a
- The upper bound of the switch is 1.0 / a.beta
- The power of the function f(x) = (ax)^beta,
-
-
Method Details
-
constantOutsideBounds
public boolean constantOutsideBounds()Remains 0 below the lower bound, and 1 above the upper bound (i.e. a multiplicative switch).- Specified by:
constantOutsideBounds
in interfaceUnivariateSwitchingFunction
- Returns:
- df(x)/dx is zero outside range lb-ub.
-
firstDerivative
First derivative at a point.- Specified by:
firstDerivative
in interfaceUnivariateDiffFunction
- Parameters:
x
- a double.- Returns:
- f'(x)
- Throws:
IllegalArgumentException
- If f'(x) is undefined at x.
-
getExponent
public double getExponent()Gets the value of beta in f(x) = (a*x)^beta- Returns:
- Exponent of input
-
getHighestOrderZeroDerivative
public int getHighestOrderZeroDerivative()The highest-order derivative that is zero at the bounds.- Specified by:
getHighestOrderZeroDerivative
in interfaceUnivariateSwitchingFunction
- Returns:
- Maximum order zero derivative at bounds.
-
getMultiplier
public double getMultiplier()Gets the value of a in f(x) = (a*x)^beta.- Returns:
- Multiplier of input
-
getOneBound
public double getOneBound()Gets the one bound, where f(x) becomes one.- Specified by:
getOneBound
in interfaceUnivariateSwitchingFunction
- Returns:
- One bound
-
getZeroBound
public double getZeroBound()Gets the zero bound, where f(x) becomes zero.- Specified by:
getZeroBound
in interfaceUnivariateSwitchingFunction
- Returns:
- Zero bound
-
highestOrderZeroDerivativeAtZeroBound
public int highestOrderZeroDerivativeAtZeroBound()Power switch derivatives can be zero at the zero bound if the exponent is greater than the derivative order.- Specified by:
highestOrderZeroDerivativeAtZeroBound
in interfaceUnivariateSwitchingFunction
- Returns:
- the highest order zero derivative at zero bound
-
nthDerivative
N'th order derivative at a point. Should be relatively optional for any order above 2.- Specified by:
nthDerivative
in interfaceUnivariateDiffFunction
- Parameters:
x
- a double.order
- Derivative order (>= 1)- Returns:
- d^nf(x)/dx^n
- Throws:
IllegalArgumentException
- If derivative undefined at x.
-
secondDerivative
Second derivative at a point.- Specified by:
secondDerivative
in interfaceUnivariateDiffFunction
- Parameters:
x
- a double.- Returns:
- f''(x)
- Throws:
IllegalArgumentException
- If f''(x) is undefined at x.
-
symmetricToUnity
public boolean symmetricToUnity()True if f(lb + delta) + f(ub - delta) = 1 for all delta between 0 and (ub - lb). For example, a power switch with beta 1 is symmetric to unity, as f(l) + f(1-l) = 1, but beta 2 produces a non-unity result, where f(0.5) + f(0.5) = 0.5.- Specified by:
symmetricToUnity
in interfaceUnivariateSwitchingFunction
- Returns:
- If symmetry produces unity result.
-
toString
-
validOutsideBounds
public boolean validOutsideBounds()Remains in the range 0-1 outside the bounds. Implied to be true if constantOutsideBounds is true.- Specified by:
validOutsideBounds
in interfaceUnivariateSwitchingFunction
- Returns:
- min(f ( x)) = 0 and max(f(x)) = 1.
-
valueAt
Value at a point- Specified by:
valueAt
in interfaceUnivariateDiffFunction
- Parameters:
x
- a double.- Returns:
- f(x)
- Throws:
IllegalArgumentException
- If f(x) is undefined at x.
-