Package ffx.numerics.switching
Class ConstantSwitch
java.lang.Object
ffx.numerics.switching.ConstantSwitch
- All Implemented Interfaces:
UnivariateDiffFunction
,UnivariateSwitchingFunction
The ConstantSwitch returns a constant value for all input values x. This is useful for having a
single code path that accommodates both "real" switching behavior and no switching behavior. The
default value is 1.0.
- Author:
- Jacob M. Litman, Michael J. Schnieders
-
Constructor Summary
ConstructorDescriptionDefault constructor: constant 1.0 value.ConstantSwitch
(double value) Permits specification of a value. -
Method Summary
Modifier and TypeMethodDescriptionboolean
Remains 0 below the lower bound, and 1 above the upper bound (i.e. a multiplicative switch).double
firstDerivative
(double x) First derivative at a point.int
The highest-order derivative that is zero at the bounds.double
Gets the one bound, where f(x) becomes one.double
Gets the zero bound, where f(x) becomes zero.double
nthDerivative
(double x, int order) N'th order derivative at a point.double
secondDerivative
(double x) Second derivative at a point.boolean
True if f(lb + delta) + f(ub - delta) = 1 for all delta between 0 and (ub - lb).toString()
boolean
Remains in the range 0-1 outside the bounds.double
valueAt
(double x) Value at a pointMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface ffx.numerics.switching.UnivariateSwitchingFunction
highestOrderZeroDerivativeAtZeroBound
-
Constructor Details
-
ConstantSwitch
public ConstantSwitch()Default constructor: constant 1.0 value. -
ConstantSwitch
public ConstantSwitch(double value) Permits specification of a value.- Parameters:
value
- Value this ConstantSwitch should maintain.
-
-
Method Details
-
constantOutsideBounds
public boolean constantOutsideBounds()Remains 0 below the lower bound, and 1 above the upper bound (i.e. a multiplicative switch).- Specified by:
constantOutsideBounds
in interfaceUnivariateSwitchingFunction
- Returns:
- df(x)/dx is zero outside range lb-ub.
-
firstDerivative
public double firstDerivative(double x) First derivative at a point.- Specified by:
firstDerivative
in interfaceUnivariateDiffFunction
- Parameters:
x
- a double.- Returns:
- f'(x)
-
getHighestOrderZeroDerivative
public int getHighestOrderZeroDerivative()The highest-order derivative that is zero at the bounds.- Specified by:
getHighestOrderZeroDerivative
in interfaceUnivariateSwitchingFunction
- Returns:
- Maximum order zero derivative at bounds.
-
getOneBound
public double getOneBound()Gets the one bound, where f(x) becomes one.- Specified by:
getOneBound
in interfaceUnivariateSwitchingFunction
- Returns:
- One bound
-
getZeroBound
public double getZeroBound()Gets the zero bound, where f(x) becomes zero.- Specified by:
getZeroBound
in interfaceUnivariateSwitchingFunction
- Returns:
- Zero bound
-
nthDerivative
N'th order derivative at a point. Should be relatively optional for any order above 2.- Specified by:
nthDerivative
in interfaceUnivariateDiffFunction
- Parameters:
x
- a double.order
- Derivative order (>= 1)- Returns:
- d^nf(x)/dx^n
- Throws:
IllegalArgumentException
- If derivative undefined at x.
-
secondDerivative
public double secondDerivative(double x) Second derivative at a point.- Specified by:
secondDerivative
in interfaceUnivariateDiffFunction
- Parameters:
x
- a double.- Returns:
- f''(x)
-
symmetricToUnity
public boolean symmetricToUnity()True if f(lb + delta) + f(ub - delta) = 1 for all delta between 0 and (ub - lb). For example, a power switch with beta 1 is symmetric to unity, as f(l) + f(1-l) = 1, but beta 2 produces a non-unity result, where f(0.5) + f(0.5) = 0.5.- Specified by:
symmetricToUnity
in interfaceUnivariateSwitchingFunction
- Returns:
- If symmetry produces unity result.
-
toString
-
validOutsideBounds
public boolean validOutsideBounds()Remains in the range 0-1 outside the bounds. Implied to be true if constantOutsideBounds is true.- Specified by:
validOutsideBounds
in interfaceUnivariateSwitchingFunction
- Returns:
- min(f ( x)) = 0 and max(f(x)) = 1.
-
valueAt
Value at a point- Specified by:
valueAt
in interfaceUnivariateDiffFunction
- Parameters:
x
- a double.- Returns:
- f(x)
- Throws:
IllegalArgumentException
- If f(x) is undefined at x.
-