Package ffx.numerics.multipole
Class GKSourceSIMD
java.lang.Object
ffx.numerics.multipole.GKSourceSIMD
The GKSource class generates the source terms for the Generalized Kirkwood version of the tensor recursion.
-
Field Summary
Modifier and TypeFieldDescriptionprotected final DoubleVector[]
Chain rule terms from differentiating zeroth order born radii auxiliary functions (bn0) with respect to Ai or Aj. -
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionprotected void
bn
(int n) Compute the function b, which are chain rule terms from differentiating zeroth order auxiliary functions (an0) with respect to Ai or Aj.void
generateSource
(GKTensorMode mode, GKMultipoleOrder multipole, DoubleVector r2, DoubleVector ai, DoubleVector aj) Generate source terms for the Kirkwood version of the Challacombe et al. recursion.protected void
source
(DoubleVector[] work, GKMultipoleOrder multipoleOrder) Generate source terms for the Kirkwood version of the Challacombe et al. recursion.
-
Field Details
-
bn
Chain rule terms from differentiating zeroth order born radii auxiliary functions (bn0) with respect to Ai or Aj.
-
-
Constructor Details
-
GKSourceSIMD
public GKSourceSIMD(int order, double gc) Construct a new GKSource object.- Parameters:
order
- Recursion order.gc
- Generalized Kirkwood constant.
-
-
Method Details
-
source
Generate source terms for the Kirkwood version of the Challacombe et al. recursion.- Parameters:
work
- The array to store the source terms.multipoleOrder
- The multipole order.
-
generateSource
public void generateSource(GKTensorMode mode, GKMultipoleOrder multipole, DoubleVector r2, DoubleVector ai, DoubleVector aj) Generate source terms for the Kirkwood version of the Challacombe et al. recursion.- Parameters:
mode
- The tensor mode.multipole
- The multipole order.r2
- Separation distance squared.ai
- Born radius of atom i.aj
- Born radius of atom j.
-
bn
protected void bn(int n) Compute the function b, which are chain rule terms from differentiating zeroth order auxiliary functions (an0) with respect to Ai or Aj.- Parameters:
n
- Multipole order.
-