Class GKSource

java.lang.Object
ffx.numerics.multipole.GKSource

public class GKSource extends Object
The GKSource class generates the source terms for the Generalized Kirkwood version of the tensor recursion.
  • Field Summary

    Fields
    Modifier and Type
    Field
    Description
    protected final double[]
    Chain rule terms from differentiating zeroth order born radii auxiliary functions (bn0) with respect to Ai or Aj.
  • Constructor Summary

    Constructors
    Constructor
    Description
    GKSource(int order, double gc)
    Construct a new GKSource object.
  • Method Summary

    Modifier and Type
    Method
    Description
    protected static double[]
    anmc(int n)
    Return coefficients needed when taking derivatives of auxiliary functions.
    protected void
    bn(int n)
    Compute the function b, which are chain rule terms from differentiating zeroth order auxiliary functions (an0) with respect to Ai or Aj.
    static double
    cn(int n, double Eh, double Es)
    Compute the Kirkwood dielectric function for a multipole of order n.
    void
    generateSource(GKTensorMode mode, GKMultipoleOrder multipole, double r2, double ai, double aj)
    Generate source terms for the Kirkwood version of the Challacombe et al. recursion.
    static double
    selfEnergy(PolarizableMultipole polarizableMultipole, double ai, double Eh, double Es)
    Compute the self-energy of a polarizable multipole.
    protected void
    source(double[] work, GKMultipoleOrder multipoleOrder)
    Generate source terms for the Kirkwood version of the Challacombe et al. recursion.

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Field Details

    • bn

      protected final double[] bn
      Chain rule terms from differentiating zeroth order born radii auxiliary functions (bn0) with respect to Ai or Aj.
  • Constructor Details

    • GKSource

      public GKSource(int order, double gc)
      Construct a new GKSource object.
      Parameters:
      order - Recursion order.
      gc - Generalized Kirkwood constant.
  • Method Details

    • source

      protected void source(double[] work, GKMultipoleOrder multipoleOrder)
      Generate source terms for the Kirkwood version of the Challacombe et al. recursion.
      Parameters:
      work - The array to store the source terms.
      multipoleOrder - The multipole order.
    • generateSource

      public void generateSource(GKTensorMode mode, GKMultipoleOrder multipole, double r2, double ai, double aj)
      Generate source terms for the Kirkwood version of the Challacombe et al. recursion.
      Parameters:
      mode - The tensor mode.
      multipole - The multipole order.
      r2 - Separation distance squared.
      ai - Born radius of atom i.
      aj - Born radius of atom j.
    • bn

      protected void bn(int n)
      Compute the function b, which are chain rule terms from differentiating zeroth order auxiliary functions (an0) with respect to Ai or Aj.
      Parameters:
      n - Multipole order.
    • anmc

      protected static double[] anmc(int n)
      Return coefficients needed when taking derivatives of auxiliary functions.
      Parameters:
      n - Multipole order.
      Returns:
      Returns coefficients needed when taking derivatives of auxiliary functions.
    • cn

      public static double cn(int n, double Eh, double Es)
      Compute the Kirkwood dielectric function for a multipole of order n.
      Parameters:
      n - Multipole order.
      Eh - Homogeneous dielectric.
      Es - Solvent dielectric.
      Returns:
      Returns (n+1)*(Eh-Es)/((n+1)*Es + n*Eh)) / Eh.
    • selfEnergy

      public static double selfEnergy(PolarizableMultipole polarizableMultipole, double ai, double Eh, double Es)
      Compute the self-energy of a polarizable multipole.
      Parameters:
      polarizableMultipole - The polarizable multipole.
      ai - Born radius of atom i.
      Eh - Homogeneous dielectric.
      Es - Solvent dielectric.
      Returns:
      Returns the self-energy of a polarizable multipole.